摘要翻译:
当预处理拟合不完善时,我们分析了合成控制(SC)和相关估计量的性质。在这个框架中,我们证明了当预处理周期数为无穷大时,如果处理分配与未观察到的混杂相关,这些估计量通常是有偏的。然而,我们表明,相对于差中差估计器,SC方法的贬低版本可以在偏差和方差方面显著改善。我们还导出了一个规范检验,在这种情况下,不完全预处理拟合的降级SC估计量。鉴于我们的理论结果,我们为应用研究人员提供了实践指导,如何证明这种估计量在经验应用中的使用是合理的。
---
英文标题:
《Synthetic Controls with Imperfect Pre-Treatment Fit》
---
作者:
Bruno Ferman and Cristine Pinto
---
最新提交年份:
2021
---
分类信息:
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
---
英文摘要:
We analyze the properties of the Synthetic Control (SC) and related estimators when the pre-treatment fit is imperfect. In this framework, we show that these estimators are generally biased if treatment assignment is correlated with unobserved confounders, even when the number of pre-treatment periods goes to infinity. Still, we show that a demeaned version of the SC method can substantially improve in terms of bias and variance relative to the difference-in-difference estimator. We also derive a specification test for the demeaned SC estimator in this setting with imperfect pre-treatment fit. Given our theoretical results, we provide practical guidance for applied researchers on how to justify the use of such estimators in empirical applications.
---
PDF链接:
https://arxiv.org/pdf/1911.08521