摘要翻译:
提出了一种基于流体动力学模型COCOS模型的多通道人工风噪声发生器。特别地,该模型被用来逼近在自由场中用紧密间隔的传声器测量的风噪声信号的复相干函数,并用于时不变的风向和风速。初步实验集中在记录的风噪声信号的空间分析和不同测量设置的Corcos模型的验证。然后,利用COCOS模型综合生成具有所需复相干性的风噪声信号。设计了多通道信号发生器,扩展了现有的单通道信号发生器,以产生N个相互不相关的信号,同时利用一种在复相干约束下产生多通道非平稳噪声信号的算法,得到了预定义的复相干函数。合成信号的时间、频谱和空间特征与实测风噪声的观测结果相吻合。人工生成克服了收集纯风噪声样本进行降噪评估的耗时挑战,并在模拟中使用的生成信号数量上提供了灵活性。
---
英文标题:
《Simulating Multi-channel Wind Noise Based on the Corcos Model》
---
作者:
Daniele Mirabilii, Emanu\"el A. P. Habets
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Audio and Speech Processing 音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome. Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval; audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的
深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
一级分类:Computer Science 计算机科学
二级分类:Sound 声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
---
英文摘要:
A novel multi-channel artificial wind noise generator based on a fluid dynamics model, namely the Corcos model, is proposed. In particular, the model is used to approximate the complex coherence function of wind noise signals measured with closely-spaced microphones in the free-field and for time-invariant wind stream direction and speed. Preliminary experiments focus on a spatial analysis of recorded wind noise signals and the validation of the Corcos model for diverse measurement set-ups. Subsequently, the Corcos model is used to synthetically generate wind noise signals exhibiting the desired complex coherence. The multi-channel generator is designed extending an existing single-channel generator to create N mutually uncorrelated signals, while the predefined complex coherence function is obtained exploiting an algorithm developed to generate multi-channel non-stationary noise signals under a complex coherence constraint. Temporal, spectral and spatial characteristics of synthetic signals match with those observed in measured wind noise. The artificial generation overcomes the time-consuming challenge of collecting pure wind noise samples for noise reduction evaluations and provides flexibility in the number of generated signals used in the simulations.
---
PDF链接:
https://arxiv.org/pdf/1805.09679