摘要翻译:
从语音波形估计声门流量是语音分析和参数化的关键方法。为了将第一声道共振从声门共振峰(描述声带振动开放相位的低频共振)中分离出来,人们进行了大量的研究。然而,很少有方法用高频频谱倾斜来描述声带振动的返回相位,这对感知声带的努力至关重要。本文提出了一种改进的迭代自适应逆滤波(IAIF),称为GFM-IAIF。GFM-IAIF包括声门的完整光谱模型,包括声门共振峰和光谱倾斜特征。与标准IAIF方法的比较表明,虽然GFM-IAIF在声道去除方面保持了良好的性能,但它显著改善了与发声努力相关的感知音质变化。
---
英文标题:
《On the Use of a Spectral Glottal Model for the Source-filter Separation
of Speech》
---
作者:
Olivier Perrotin and Ian Vince McLoughlin
---
最新提交年份:
2017
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Audio and Speech Processing 音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome. Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval; audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的
深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
一级分类:Computer Science 计算机科学
二级分类:Sound 声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
---
英文摘要:
The estimation of glottal flow from a speech waveform is a key method for speech analysis and parameterization. Significant research effort has been made to dissociate the first vocal tract resonance from the glottal formant (the low-frequency resonance describing the open-phase of the vocal fold vibration). However few methods cope with estimation of high-frequency spectral tilt to describe the return-phase of the vocal fold vibration, which is crucial to the perception of vocal effort. This paper proposes an improved version of the well-known Iterative Adaptive Inverse Filtering (IAIF) called GFM-IAIF. GFM-IAIF includes a full spectral model of the glottis that incorporates both glottal formant and spectral tilt features. Comparisons with the standard IAIF method show that while GFM-IAIF maintains good performance on vocal tract removal, it significantly improves the perceptive timbral variations associated to vocal effort.
---
PDF链接:
https://arxiv.org/pdf/1712.08034