摘要翻译:
本文研究了多向聚类采样环境下的双/去偏
机器学习(DML)。提出了一种新的多向交叉拟合算法和基于该算法的多向DML估计器。我们还建立了一个多向聚类鲁棒标准误差公式。仿真结果表明,该方法具有良好的有限样本性能。将所提出的方法应用于市场份额数据进行需求分析,我们获得了比非鲁棒的更大的双向聚类鲁棒标准误差。
---
英文标题:
《Multiway Cluster Robust Double/Debiased Machine Learning》
---
作者:
Harold D. Chiang, Kengo Kato, Yukun Ma, Yuya Sasaki
---
最新提交年份:
2020
---
分类信息:
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
---
英文摘要:
This paper investigates double/debiased machine learning (DML) under multiway clustered sampling environments. We propose a novel multiway cross fitting algorithm and a multiway DML estimator based on this algorithm. We also develop a multiway cluster robust standard error formula. Simulations indicate that the proposed procedure has favorable finite sample performance. Applying the proposed method to market share data for demand analysis, we obtain larger two-way cluster robust standard errors than non-robust ones.
---
PDF链接:
https://arxiv.org/pdf/1909.03489