摘要翻译:
在作者与V.Uma的早期工作中,用生成元和关系描述了非奇异复pro-jective变体和拟toric流形的k-环。本文给出了完全非奇异toric变体的类似描述。实际上,我们的方法使我们能够对具有局部标准环面作用和轨道空间为同调多面体的更一般的环面流形得到这样的描述。
---
英文标题:
《K theory of smooth complete toric varieties and related spaces》
---
作者:
Parameswaran Sankaran
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Topology 代数拓扑
分类描述:Homotopy theory, homological algebra, algebraic treatments of manifolds
同伦理论,同调代数,流形的代数处理
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
The K-rings of non-singular complex pro jective varieties as well as quasi- toric manifolds were described in terms of generators and relations in an earlier work of the author with V. Uma. In this paper we obtain a similar description for complete non-singular toric varieties. Indeed, our approach enables us to obtain such a description for the more general class of torus manifolds with locally standard torus action and orbit space a homology polytope.
---
PDF链接:
https://arxiv.org/pdf/0707.1566