摘要翻译:
本文研究了一类短期利率利率模型,其短期利率与终端测度r(t)=a(t)exp(x(t))中高斯马尔可夫过程x(t)的指数成正比。这些型号包括黑色、德曼、玩具和黑色、卡拉辛斯基型号中的终端措施。我们证明了这种利率模型与具有吸引两体相互作用的格子气体V(t1,t2)=-CoV(x(t1),x(t2))是等价的。我们详细讨论了具有x(t)和Ornstein,Uhlenbeck过程的Black,Karasinski模型,并证明了它与Kac和Helfand所考虑的格子气模型是相似的,具有吸引的长程两体相互作用V(x,y)=-α(E^{-γx-y}-E^{-γ(x+y)})。给出了该模型的一个显式解,作为晶格气体状态的和,并以此表明该模型具有类似于Black、Derman、Toy模型在终端测量中所发现的相变。
---
英文标题:
《Equivalence of interest rate models and lattice gases》
---
作者:
Dan Pirjol
---
最新提交年份:
2012
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Mathematical Physics 数学物理
分类描述:Articles in this category focus on areas of research that illustrate the application of mathematics to problems in physics, develop mathematical methods for such applications, or provide mathematically rigorous formulations of existing physical theories. Submissions to math-ph should be of interest to both physically oriented mathematicians and mathematically oriented physicists; submissions which are primarily of interest to theoretical physicists or to mathematicians should probably be directed to the respective physics/math categories
这一类别的文章集中在说明数学在物理问题中的应用的研究领域,为这类应用开发数学方法,或提供现有物理理论的数学严格公式。提交的数学-PH应该对物理方向的数学家和数学方向的物理学家都感兴趣;主要对理论物理学家或数学家感兴趣的投稿可能应该指向各自的物理/数学类别
--
一级分类:Mathematics 数学
二级分类:Mathematical Physics 数学物理
分类描述:math.MP is an alias for math-ph. Articles in this category focus on areas of research that illustrate the application of mathematics to problems in physics, develop mathematical methods for such applications, or provide mathematically rigorous formulations of existing physical theories. Submissions to math-ph should be of interest to both physically oriented mathematicians and mathematically oriented physicists; submissions which are primarily of interest to theoretical physicists or to mathematicians should probably be directed to the respective physics/math categories
math.mp是math-ph的别名。这一类别的文章集中在说明数学在物理问题中的应用的研究领域,为这类应用开发数学方法,或提供现有物理理论的数学严格公式。提交的数学-PH应该对物理方向的数学家和数学方向的物理学家都感兴趣;主要对理论物理学家或数学家感兴趣的投稿可能应该指向各自的物理/数学类别
--
---
英文摘要:
We consider the class of short rate interest rate models for which the short rate is proportional to the exponential of a Gaussian Markov process x(t) in the terminal measure r(t) = a(t) exp(x(t)). These models include the Black, Derman, Toy and Black, Karasinski models in the terminal measure. We show that such interest rate models are equivalent with lattice gases with attractive two-body interaction V(t1,t2)= -Cov(x(t1),x(t2)). We consider in some detail the Black, Karasinski model with x(t) an Ornstein, Uhlenbeck process, and show that it is similar with a lattice gas model considered by Kac and Helfand, with attractive long-range two-body interactions V(x,y) = -\alpha (e^{-\gamma |x - y|} - e^{-\gamma (x + y)}). An explicit solution for the model is given as a sum over the states of the lattice gas, which is used to show that the model has a phase transition similar to that found previously in the Black, Derman, Toy model in the terminal measure.
---
PDF链接:
https://arxiv.org/pdf/1204.0915