摘要翻译:
复还原群$G$的仿射Grassmannian上的逆束范畴给出了整数上Langlands对偶群$\check G_\bz$分裂形式的正则几何构造。给定一个字段$k$,我们给出了$\check G_k$的准分裂形式的Tannakian构造,以及与$\check G_k$的内部形式相关联的gerbe的构造。
---
英文标题:
《Geometric Langlands duality and forms of reductive groups》
---
作者:
Vivek Dhand
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
The category of perverse sheaves on the affine Grassmannian of a complex reductive group $G$ gives a canonical geometric construction of the split form of the Langlands dual group $\check G_\bZ$ over the integers. Given a field $k$, we give a Tannakian construction of the quasi-split forms of $\check G_k$, as well as a construction of the gerbe associated to an inner form of $\check G_k$.
---
PDF链接:
https://arxiv.org/pdf/0811.2620