摘要翻译:
我们将S^1-等变局部化技术应用于派生代数几何中的环空间上的束,得到了几何表示理论核心的两个范畴族之间的基本联系。即我们将自由环空间、循环同调和de Rham上同调之间的关系归类,将光滑叠X上的D-模范畴恢复为S^1-等变相干束范畴在其环空间LX上的局部化。主要的观察是,这个过程将旗变种上的等变D-模范畴与斯坦伯格变种及其亲属上的等变相干束范畴联系起来。这提供了有限Hecke代数和仿射Hecke代数的几何与辫子群之间的直接联系,以及实还原群和复还原群表示的所有范畴参数的统一几何构造。本文是将几何Langlands程序应用于复杂的、真实的局部Langlands程序的第一步。
---
英文标题:
《Loop Spaces and Langlands Parameters》
---
作者:
David Ben-Zvi, David Nadler
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Quantum Algebra 量子代数
分类描述:Quantum groups, skein theories, operadic and diagrammatic algebra, quantum field theory
量子群,skein理论,运算代数和图解代数,量子场论
--
---
英文摘要:
We apply the technique of S^1-equivariant localization to sheaves on loop spaces in derived algebraic geometry, and obtain a fundamental link between two families of categories at the heart of geometric representation theory. Namely, we categorify the well known relationship between free loop spaces, cyclic homology and de Rham cohomology to recover the category of D-modules on a smooth stack X as a localization of the category of S^1-equivariant coherent sheaves on its loop space LX. The main observation is that this procedure connects categories of equivariant D-modules on flag varieties with categories of equivariant coherent sheaves on the Steinberg variety and its relatives. This provides a direct connection between the geometry of finite and affine Hecke algebras and braid groups, and a uniform geometric construction of all of the categorical parameters for representations of real and complex reductive groups. This paper forms the first step in a project to apply the geometric Langlands program to the complex and real local Langlands programs, which we describe.
---
PDF链接:
https://arxiv.org/pdf/0706.0322