全部版块 我的主页
论坛 经济学人 二区 外文文献专区
499 0
2022-04-13
摘要翻译:
我们引入了“非语音”嵌入,它是基于对口语上下文特征表示的无监督学习。在没有转录或说话人信息的情况下,通过使用基于上下文和非上下文识别的直接学习目标和负抽样,对多达9500小时的爬行英语语音数据进行嵌入训练。我们使用暹罗卷积神经网络结构来训练非语音嵌入,并在说话人比较、话语聚类以及作为上下文特征在TED-LIUM上训练的TDNN-HMM声学模型中进行评估,并将其与I向量基线进行比较。特别地,从最近发布的公共语音语料库解码域外语音数据显示出一致的WER减少。我们在允许的开放源码许可下发布源代码和预先训练的非语音模型。
---
英文标题:
《Unspeech: Unsupervised Speech Context Embeddings》
---
作者:
Benjamin Milde, Chris Biemann
---
最新提交年份:
2018
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Sound        声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
一级分类:Computer Science        计算机科学
二级分类:Computation and Language        计算与语言
分类描述:Covers natural language processing. Roughly includes material in ACM Subject Class I.2.7. Note that work on artificial languages (programming languages, logics, formal systems) that does not explicitly address natural-language issues broadly construed (natural-language processing, computational linguistics, speech, text retrieval, etc.) is not appropriate for this area.
涵盖自然语言处理。大致包括ACM科目I.2.7类的材料。请注意,人工语言(编程语言、逻辑学、形式系统)的工作,如果没有明确地解决广义的自然语言问题(自然语言处理、计算语言学、语音、文本检索等),就不适合这个领域。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Audio and Speech Processing        音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome.  Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval;  audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--

---
英文摘要:
  We introduce "Unspeech" embeddings, which are based on unsupervised learning of context feature representations for spoken language. The embeddings were trained on up to 9500 hours of crawled English speech data without transcriptions or speaker information, by using a straightforward learning objective based on context and non-context discrimination with negative sampling. We use a Siamese convolutional neural network architecture to train Unspeech embeddings and evaluate them on speaker comparison, utterance clustering and as a context feature in TDNN-HMM acoustic models trained on TED-LIUM, comparing it to i-vector baselines. Particularly decoding out-of-domain speech data from the recently released Common Voice corpus shows consistent WER reductions. We release our source code and pre-trained Unspeech models under a permissive open source license.
---
PDF链接:
https://arxiv.org/pdf/1804.06775
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群