摘要翻译:
为了建立包含不确定性和概率的组合决策问题的模型,我们引入了随机约束规划。随机约束程序既包含决策变量(我们可以设置),又包含随机变量(服从概率分布)。它们结合了传统约束满足、随机整数规划和随机可满足性的最佳特征。给出了随机约束规划的一个语义,并给出了一些完备的算法和逼近过程。最后,我们讨论了随机约束规划的一些扩展,以放松随机变量之间的独立性等各种假设,并与其他不确定情况下的决策方法进行了比较。
---
英文标题:
《Stochastic Constraint Programming》
---
作者:
Toby Walsh
---
最新提交年份:
2009
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
To model combinatorial decision problems involving uncertainty and probability, we introduce stochastic constraint programming. Stochastic constraint programs contain both decision variables (which we can set) and stochastic variables (which follow a probability distribution). They combine together the best features of traditional constraint satisfaction, stochastic integer programming, and stochastic satisfiability. We give a semantics for stochastic constraint programs, and propose a number of complete algorithms and approximation procedures. Finally, we discuss a number of extensions of stochastic constraint programming to relax various assumptions like the independence between stochastic variables, and compare with other approaches for decision making under uncertainty.
---
PDF链接:
https://arxiv.org/pdf/0903.1152