全部版块 我的主页
论坛 经济学人 二区 外文文献专区
313 0
2022-04-14
摘要翻译:
信度传播及其变体是常用的近似推理方法,但它们的运行时间甚至收敛性在很大程度上依赖于发送消息的时间安排。最近,动态更新调度在硬网络上的收敛速度比静态调度快得多,即Elidan等人的残差BP调度。[2006]。但是RBP算法浪费了消息更新:计算许多消息只是为了确定它们的优先级,实际上从来没有执行过。在本文中,我们证明了估计残差,而不是直接计算残差,导致收敛所需的消息数量和总运行时间显著减少。残差估计使用一个上限的基础上,最近的工作的消息错误在BP。在合成网络和现实网络中,这大大减少了BP的运行时间,在某些情况下减少了五倍,而不影响解的质量。
---
英文标题:
《Improved Dynamic Schedules for Belief Propagation》
---
作者:
Charles Sutton, Andrew McCallum
---
最新提交年份:
2012
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Machine Learning        机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Statistics        统计学
二级分类:Machine Learning        机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--

---
英文摘要:
  Belief propagation and its variants are popular methods for approximate inference, but their running time and even their convergence depend greatly on the schedule used to send the messages. Recently, dynamic update schedules have been shown to converge much faster on hard networks than static schedules, namely the residual BP schedule of Elidan et al. [2006]. But that RBP algorithm wastes message updates: many messages are computed solely to determine their priority, and are never actually performed. In this paper, we show that estimating the residual, rather than calculating it directly, leads to significant decreases in the number of messages required for convergence, and in the total running time. The residual is estimated using an upper bound based on recent work on message errors in BP. On both synthetic and real-world networks, this dramatically decreases the running time of BP, in some cases by a factor of five, without affecting the quality of the solution.
---
PDF链接:
https://arxiv.org/pdf/1206.5291
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群