摘要翻译:
我们注意到Koll\'ar和Esnault-Viehweg的消失定理和内射定理可以用来对伴随线丛整体截面沿适当乘子理想束消失的Ein-Lazarsfeld Skoda型除法定理的加强给出一个快速的代数证明,并将其推广到更高的上同调类。对于全局截面,这也是对Siu的一个分析结果的代数翻译的一个更一般的陈述。在此过程中,我们写下一个乘数理想的内射性陈述,以及它的标准结果。
---
英文标题:
《Global division of cohomology classes via injectivity》
---
作者:
Lawrence Ein and Mihnea Popa
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Complex Variables 复变数
分类描述:Holomorphic functions, automorphic group actions and forms, pseudoconvexity, complex geometry, analytic spaces, analytic sheaves
全纯函数,自守群作用与形式,伪凸性,复几何,解析空间,解析束
--
---
英文摘要:
We note that the vanishing and injectivity theorems of Koll\'ar and Esnault-Viehweg can be used to give a quick algebraic proof of a strengthening of the Ein-Lazarsfeld Skoda-type division theorem for global sections of adjoint line bundles vanishing along suitable multiplier ideal sheaves, and to extend it to higher cohomology classes as well. For global sections, this is also a slightly more general statement of the algebraic translation of an analytic result of Siu. Along the way we write down an injectivity statement for multiplier ideals, and its standard consequences.
---
PDF链接:
https://arxiv.org/pdf/0712.3186