摘要翻译:
本研究致力于类皮层视觉目标识别系统的开发。我们提出了一个通用的框架,它由三个层次(模块)组成。这些模块在功能上对应于V1、V4和IT领域。在V4和它之间使用了自底向上和自顶向下的层次连接。输入与首选刺激的匹配度越高,神经元的反应时间越短。因此,关于单个刺激的信息是在时间上分布的,并通过尖峰波传播。尖峰的相互联系和波实现了预测编码:根据第一波尖峰传递的信息生成初始假设,并用连续波携带的信息进行检验。开发被认为是V4中特征和对象的提取和积累。一旦存储了一个特性,如果很少激活,就可以被处理。这会导致功能库的更新。因此,它中的对象也会更新。这说明了V4、IT以及这些区域之间的联系的生长过程和拓扑结构的动态变化。
---
英文标题:
《A General Framework for Development of the Cortex-like Visual Object
Recognition System: Waves of Spikes, Predictive Coding and Universal
Dictionary of Features》
---
作者:
Sergey S. Tarasenko
---
最新提交年份:
2011
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Computer Vision and Pattern Recognition 计算机视觉与模式识别
分类描述:Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
涵盖图像处理、计算机视觉、模式识别和场景理解。大致包括ACM课程I.2.10、I.4和I.5中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Machine Learning
机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Computer Science 计算机科学
二级分类:Neural and Evolutionary Computing 神经与进化计算
分类描述:Covers neural networks, connectionism, genetic algorithms, artificial life, adaptive behavior. Roughly includes some material in ACM Subject Class C.1.3, I.2.6, I.5.
涵盖
神经网络,连接主义,遗传算法,人工生命,自适应行为。大致包括ACM学科类C.1.3、I.2.6、I.5中的一些材料。
--
---
英文摘要:
This study is focused on the development of the cortex-like visual object recognition system. We propose a general framework, which consists of three hierarchical levels (modules). These modules functionally correspond to the V1, V4 and IT areas. Both bottom-up and top-down connections between the hierarchical levels V4 and IT are employed. The higher the degree of matching between the input and the preferred stimulus, the shorter the response time of the neuron. Therefore information about a single stimulus is distributed in time and is transmitted by the waves of spikes. The reciprocal connections and waves of spikes implement predictive coding: an initial hypothesis is generated on the basis of information delivered by the first wave of spikes and is tested with the information carried by the consecutive waves. The development is considered as extraction and accumulation of features in V4 and objects in IT. Once stored a feature can be disposed, if rarely activated. This cause update of feature repository. Consequently, objects in IT are also updated. This illustrates the growing process and dynamical change of topological structures of V4, IT and connections between these areas.
---
PDF链接:
https://arxiv.org/pdf/1102.2739