全部版块 我的主页
论坛 经济学人 二区 外文文献专区
294 0
2022-04-14
摘要翻译:
我们研究了具有单空位的正方形晶格上的经典二聚体模型,通过发展所有构型集合的图论分类,扩展了密排二聚体的生成树公式。利用这种形式,我们可以解决由二聚体滑动引起的空位的可能运动问题。在无限大系统中,我们发现空位被严格堵塞的概率为57/4-10sqrt[2]。更一般地说,空位可及的畴的尺寸分布以幂律衰减为特征,指数为9/8。在有限系统中,空位到达边界的概率随系统尺寸的幂律下降,指数为1/4。空位的弱局部化仍然允许无界扩散,其特征是扩散指数,我们将其与生成树上的扩散指数联系起来。我们还对该模型进行了自由边界条件和周期边界条件的数值模拟。
---
英文标题:
《Vacancy localization in the square dimer model》
---
作者:
J. Bouttier, M. Bowick, E. Guitter and M. Jeng
---
最新提交年份:
2007
---
分类信息:

一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--

---
英文摘要:
  We study the classical dimer model on a square lattice with a single vacancy by developing a graph-theoretic classification of the set of all configurations which extends the spanning tree formulation of close-packed dimers. With this formalism, we can address the question of the possible motion of the vacancy induced by dimer slidings. We find a probability 57/4-10Sqrt[2] for the vacancy to be strictly jammed in an infinite system. More generally, the size distribution of the domain accessible to the vacancy is characterized by a power law decay with exponent 9/8. On a finite system, the probability that a vacancy in the bulk can reach the boundary falls off as a power law of the system size with exponent 1/4. The resultant weak localization of vacancies still allows for unbounded diffusion, characterized by a diffusion exponent that we relate to that of diffusion on spanning trees. We also implement numerical simulations of the model with both free and periodic boundary conditions.
---
PDF链接:
https://arxiv.org/pdf/706.1016
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群