摘要翻译:
研究了在分段线性随机势中常力驱动下过阻尼质点的到达时间分布,该势产生二分随机力。我们的方法是基于到达时间概率密度的路径积分表示。对于二分无序的特殊情况,我们显式地计算了路径积分,并利用相应的特征函数导出了到达时间概率密度的显式性质。具体来说,我们建立了中心矩的标度性质,分析了短、长、中距离下概率密度的行为。为了量化到达时间分布与高斯形状的偏差,我们评估了偏度和峰度。
---
英文标题:
《Arrival time distribution for a driven system containing quenched
dichotomous disorder》
---
作者:
S. I. Denisov (1 and 2), M. Kostur (1), E. S. Denisova (2), P.
H\"anggi (1) ((1) Universit\"at Augsburg, Germany, (2) Sumy State University,
Ukraine)
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Disordered Systems and Neural Networks 无序系统与
神经网络
分类描述:Glasses and spin glasses; properties of random, aperiodic and quasiperiodic systems; transport in disordered media; localization; phenomena mediated by defects and disorder; neural networks
眼镜和旋转眼镜;随机、非周期和准周期系统的性质;无序介质中的传输;本地化;由缺陷和无序介导的现象;神经网络
--
---
英文摘要:
We study the arrival time distribution of overdamped particles driven by a constant force in a piecewise linear random potential which generates the dichotomous random force. Our approach is based on the path integral representation of the probability density of the arrival time. We explicitly calculate the path integral for a special case of dichotomous disorder and use the corresponding characteristic function to derive prominent properties of the arrival time probability density. Specifically, we establish the scaling properties of the central moments, analyze the behavior of the probability density for short, long, and intermediate distances. In order to quantify the deviation of the arrival time distribution from a Gaussian shape, we evaluate the skewness and the kurtosis.
---
PDF链接:
https://arxiv.org/pdf/706.251