摘要翻译:
二维亚扩散连续时间随机步行者访问不同地点的渐近平均数在文献中似乎没有明确地计算过。对于其他维数,只针对步骤间等待时间分布的一个特定渐近行为计算了这个数。我们给出了两种情况在所有整数维下的显式推导,从而形式上完成了一个结果表。在这张表中,我们包括了所有整数维中的主导贡献和次主导贡献。还讨论了可以从访问的不同地点的平均数计算出的其他数量。
---
英文标题:
《Number of distinct sites visited by a subdiffusive random walker》
---
作者:
Santos Bravo Yuste, J. Klafter and Katja Lindenberg
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Disordered Systems and Neural Networks 无序系统与
神经网络
分类描述:Glasses and spin glasses; properties of random, aperiodic and quasiperiodic systems; transport in disordered media; localization; phenomena mediated by defects and disorder; neural networks
眼镜和旋转眼镜;随机、非周期和准周期系统的性质;无序介质中的传输;本地化;由缺陷和无序介导的现象;神经网络
--
---
英文摘要:
The asymptotic mean number of distinct sites visited by a subdiffusive continuous time random walker in two dimensions seems not to have been explicitly calculated anywhere in the literature. This number has been calculated for other dimensions for only one specific asymptotic behavior of the waiting time distribution between steps. We present an explicit derivation for two cases in all integer dimensions so as to formally complete a tableaux of results. In this tableaux we include the dominant as well as subdominant contributions in all integer dimensions. Other quantities that can be calculated from the mean number of distinct sites visited are also discussed.
---
PDF链接:
https://arxiv.org/pdf/711.1422