摘要翻译:
研究了有限磁场下多端相互作用量子点相干电子输运的全计数统计。微观可逆性导致累积量母函数的对称性,从而推广了量子输运背景下的涨落定理。利用这种对称性,我们导出了线性输运系统中的Onsager-Casimir关系以及非线性输运系数之间的普遍关系。
---
英文标题:
《Symmetry in Full Counting Statistics, Fluctuation Theorem, and Relations
among Nonlinear Transport Coefficients in the Presence of a Magnetic Field》
---
作者:
Keiji Saito and Yasuhiro Utsumi
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Mesoscale and Nanoscale Physics 介观和纳米物理
分类描述:Semiconducting nanostructures: quantum dots, wires, and wells. Single electronics, spintronics, 2d electron gases, quantum Hall effect, nanotubes, graphene, plasmonic nanostructures
半导体纳米结构:量子点、线和阱。单电子学,自旋电子学,二维电子气,量子霍尔效应,纳米管,石墨烯,等离子纳米结构
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
We study full counting statistics of coherent electron transport through multi-terminal interacting quantum-dots under a finite magnetic field. Microscopic reversibility leads to the symmetry of the cumulant generating function, which generalizes the fluctuation theorem in the context of quantum transport. Using this symmetry, we derive the Onsager-Casimir relation in the linear transport regime and universal relations among nonlinear transport coefficients.
---
PDF链接:
https://arxiv.org/pdf/709.4128