摘要翻译:
本文的目的是证明F\\Ollmer和Schachermayer[FS07]中的一个猜想结果,甚至是更一般的形式。假定S是一个连续半鞅且满足一个大偏差估计,这是S的均值-方差权衡过程的一个特殊增长条件。我们证明了S允许失效概率指数衰减的渐近指数套利,这是长期套利的一个强的定量形式。与F\\Ollmer和Schachermayer[FS07]相比,我们的结果不假定S是一个扩散,也不需要任何遍历性假设。
---
英文标题:
《A note on asymptotic exponential arbitrage with exponentially decaying
failure probability》
---
作者:
Kai Du, Ariel David Neufeld
---
最新提交年份:
2012
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
---
英文摘要:
The goal of this paper is to prove a result conjectured in F\"ollmer and Schachermayer [FS07], even in slightly more general form. Suppose that S is a continuous semimartingale and satisfies a large deviations estimate; this is a particular growth condition on the mean-variance tradeoff process of S. We show that S then allows asymptotic exponential arbitrage with exponentially decaying failure probability, which is a strong and quantitative form of long-term arbitrage. In contrast to F\"ollmer and Schachermayer [FS07], our result does not assume that S is a diffusion, nor does it need any ergodicity assumption.
---
PDF链接:
https://arxiv.org/pdf/1207.6281