摘要翻译:
本文提供了一个统一的框架,特别允许研究动态货币风险度量和动态可接受性指标的结构。我们在这里使用的主要数学工具是$l^0$-模理论,它允许我们显著地推广已有的结果。在本文的第一部分,我们发展了条件评价指标的一般理论,并给出了条件评价指标的鲁棒表示;在第二部分,我们将该理论应用于作用于随机过程的动态可接受性指标。
---
英文标题:
《Dynamic Assessment Indices》
---
作者:
Tomasz R. Bielecki, Igor Cialenco, Samuel Drapeau, Martin Karliczek
---
最新提交年份:
2014
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
---
英文摘要:
This paper provides a unified framework, which allows, in particular, to study the structure of dynamic monetary risk measures and dynamic acceptability indices. The main mathematical tool, which we use here, and which allows us to significantly generalize existing results is the theory of $L^0$-modules. In the first part of the paper we develop the general theory and provide a robust representation of conditional assessment indices, and in the second part we apply this theory to dynamic acceptability indices acting on stochastic processes.
---
PDF下载:
-->