摘要翻译:
用于多种应用的社区储电系统比家庭储电系统有好处。更经济的灵活性选择,如需求响应和部门耦合,可能会缩小存储设施的市场规模。本文通过考虑竞争性柔性选择来评估社区储电系统的经济性能。为此,应用了一个与参与者相关的、基于场景的优化框架。结果与文献一致,并表明社区存储系统比家庭存储系统在经济上更有效。社区存储系统相对于家庭存储系统的相对存储容量降低是可能的,因为最终用户之间的需求和发电配置被平衡。平均而言,在基本情况下,每个家庭可能减少9%的存储容量,导致较低的具体投资。同时应用需求侧灵活性选项,如扇区耦合和需求响应,使社区存储容量进一步减少高达23%。同时,灵活性选项之间的竞争导致了社区存储灵活性潜力方面的较小收益,从而降低了这些应用的市场生存能力。在最坏的情况下,在灵活性措施之间的相食效应高达38%。灵活性收益的损失超过了能力削减的节省,因此部门耦合构成了比需求响应更大的影响因素。总体而言,考虑到所述的成本趋势、规模经济和减少的可能性,一个有利可图的社区存储模式可能会在2025年至2035年之间达成。今后的工作应侧重于对政策框架的分析。
---
英文标题:
《Competition between simultaneous demand-side flexibility options: The
case of community electricity storage systems》
---
作者:
Fabian Scheller, Robert Burkhardt, Robert Schwarzeit, Russell McKenna,
Thomas Bruckner
---
最新提交年份:
2020
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Systems and Control 系统与控制
分类描述:This section includes theoretical and experimental research covering all facets of automatic control systems. The section is focused on methods of control system analysis and design using tools of modeling, simulation and optimization. Specific areas of research include nonlinear, distributed, adaptive, stochastic and robust control in addition to hybrid and discrete event systems. Application areas include automotive and aerospace control systems, network control, biological systems, multiagent and cooperative control, robotics, reinforcement learning, sensor networks, control of cyber-physical and energy-related systems, and control of computing systems.
本部分包括理论和实验研究,涵盖了自动控制系统的各个方面。本节主要介绍利用建模、仿真和优化工具进行控制系统分析和设计的方法。具体研究领域包括非线性、分布式、自适应、随机和鲁棒控制,以及混合和离散事件系统。应用领域包括汽车和航空航天控制系统、网络控制、生物系统、多智能体和协作控制、机器人学、强化学习、传感器网络、信息物理和能源相关系统的控制以及计算系统的控制。
--
一级分类:Computer Science 计算机科学
二级分类:Systems and Control 系统与控制
分类描述:cs.SY is an alias for eess.SY. This section includes theoretical and experimental research covering all facets of automatic control systems. The section is focused on methods of control system analysis and design using tools of modeling, simulation and optimization. Specific areas of research include nonlinear, distributed, adaptive, stochastic and robust control in addition to hybrid and discrete event systems. Application areas include automotive and aerospace control systems, network control, biological systems, multiagent and cooperative control, robotics, reinforcement learning, sensor networks, control of cyber-physical and energy-related systems, and control of computing systems.
cs.sy是eess.sy的别名。本部分包括理论和实验研究,涵盖了自动控制系统的各个方面。本节主要介绍利用建模、仿真和优化工具进行控制系统分析和设计的方法。具体研究领域包括非线性、分布式、自适应、随机和鲁棒控制,以及混合和离散事件系统。应用领域包括汽车和航空航天控制系统、网络控制、生物系统、多智能体和协作控制、机器人学、强化学习、传感器网络、信息物理和能源相关系统的控制以及计算系统的控制。
--
一级分类:Economics 经济学
二级分类:General Economics 一般经济学
分类描述:General methodological, applied, and empirical contributions to economics.
对经济学的一般方法、应用和经验贡献。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Economics 经济学
分类描述:q-fin.EC is an alias for econ.GN. Economics, including micro and macro economics, international economics, theory of the firm, labor economics, and other economic topics outside finance
q-fin.ec是econ.gn的别名。经济学,包括微观和宏观经济学、国际经济学、企业理论、劳动经济学和其他金融以外的经济专题
--
---
英文摘要:
Community electricity storage systems for multiple applications promise benefits over household electricity storage systems. More economical flexibility options such as demand response and sector coupling might reduce the market size for storage facilities. This paper assesses the economic performance of community electricity storage systems by taking competitive flexibility options into account. For this purpose, an actor-related, scenario-based optimization framework is applied. The results are in line with the literature and show that community storage systems are economically more efficient than household storage systems. Relative storage capacity reductions of community storage systems over household storage systems are possible, as the demand and generation profiles are balanced out among end users. On average, storage capacity reductions of 9% per household are possible in the base case, resulting in lower specific investments. The simultaneous application of demand-side flexibility options such as sector coupling and demand response enable a further capacity reduction of the community storage size by up to 23%. At the same time, the competition between flexibility options leads to smaller benefits regarding the community storage flexibility potential, which reduces the market viability for these applications. In the worst case, the cannibalization effects reach up to 38% between the flexibility measures. The losses of the flexibility benefits outweigh the savings of the capacity reduction whereby sector coupling constitutes a far greater influencing factor than demand response. Overall, in consideration of the stated cost trends, the economies of scale, and the reduction possibilities, a profitable community storage model might be reached between 2025 and 2035. Future work should focus on the analysis of policy frameworks.
---
PDF下载:
-->