英文标题:
《A central limit theorem for Latin hypercube sampling with dependence and
application to exotic basket option pricing》
---
作者:
Christoph Aistleitner and Markus Hofer and Robert Tichy
---
最新提交年份:
2013
---
英文摘要:
We consider the problem of estimating $\\mathbb{E} [f(U^1, \\ldots, U^d)]$, where $(U^1, \\ldots, U^d)$ denotes a random vector with uniformly distributed marginals. In general, Latin hypercube sampling (LHS) is a powerful tool for solving this kind of high-dimensional numerical integration problem. In the case of dependent components of the random vector $(U^1, \\ldots, U^d)$ one can achieve more accurate results by using Latin hypercube sampling with dependence (LHSD). We state a central limit theorem for the $d$-dimensional LHSD estimator, by this means generalising a result of Packham and Schmidt. Furthermore we give conditions on the function $f$ and the distribution of $(U^1, \\ldots, U^d)$ under which a reduction of variance can be achieved. Finally we compare the effectiveness of Monte Carlo and LHSD estimators numerically in exotic basket option pricing problems.
---
中文摘要:
我们考虑估计$\\mathbb{E}[f(U^1,ldots,U^d)]$的问题,其中$(U^1,ldots,U^d)$表示边缘均匀分布的随机向量。一般来说,拉丁超立方抽样(LHS)是解决这类高维数值积分问题的有力工具。在随机向量$(U^1,\\ldots,U^d)$的依赖分量的情况下,可以通过使用具有依赖性的拉丁超立方体抽样(LHSD)获得更精确的结果。通过推广Packham和Schmidt的结果,我们给出了$d$维LHSD估计的中心极限定理。此外,我们还对函数$f$和$(U^1,ldots,U^d)$的分布给出了条件,在此条件下可以实现方差的减少。最后,我们在数值上比较了Monte Carlo和LHSD估计在奇异篮子期权定价问题中的有效性。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
PDF下载:
-->