英文标题:
《Multilevel Monte Carlo For Exponential L\\\'{e}vy Models》
---
作者:
Mike Giles, Yuan Xia
---
最新提交年份:
2017
---
英文摘要:
We apply multilevel Monte Carlo for option pricing problems using exponential L\\\'{e}vy models with a uniform timestep discretisation to monitor the running maximum required for lookback and barrier options. The numerical results demonstrate the computational efficiency of this approach. We derive estimates of the convergence rate for the error introduced by the discrete monitoring of the running supremum of a broad class of L\\\'{e}vy processes. We use these to obtain upper bounds on the multilevel Monte Carlo variance convergence rate for the Variance Gamma, NIG and $\\alpha$-stable processes used in the numerical experiments. We also show numerical results and analysis of a trapezoidal approximation for Asian options.
---
中文摘要:
我们使用具有统一时间步长离散化的指数L\\{e}vy模型来监控回望期权和障碍期权所需的运行最大值,将多级蒙特卡罗应用于期权定价问题。数值结果表明了该方法的计算效率。我们推导了一类广泛的L\\\'{e}vy过程的运行上确界的离散监控引入的误差的收敛速度估计。我们利用这些来获得数值实验中使用的方差Gamma、NIG和$\\alpha$稳定过程的多级蒙特卡罗方差收敛速度的上界。我们还展示了亚式期权梯形近似的数值结果和分析。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
PDF下载:
-->