英文标题:
《Effects of polynomial trends on detrending moving average analysis》
---
作者:
Ying-Hui Shao, Gao-Feng Gu, Zhi-Qiang Jiang, Wei-Xing Zhou (ECUST)
---
最新提交年份:
2015
---
英文摘要:
The detrending moving average (DMA) algorithm is one of the best performing methods to quantify the long-term correlations in nonstationary time series. Many long-term correlated time series in real systems contain various trends. We investigate the effects of polynomial trends on the scaling behaviors and the performances of three widely used DMA methods including backward algorithm (BDMA), centered algorithm (CDMA) and forward algorithm (FDMA). We derive a general framework for polynomial trends and obtain analytical results for constant shifts and linear trends. We find that the behavior of the CDMA method is not influenced by constant shifts. In contrast, linear trends cause a crossover in the CDMA fluctuation functions. We also find that constant shifts and linear trends cause crossovers in the fluctuation functions obtained from the BDMA and FDMA methods. When a crossover exists, the scaling behavior at small scales comes from the intrinsic time series while that at large scales is dominated by the constant shifts or linear trends. We also derive analytically the expressions of crossover scales and show that the crossover scale depends on the strength of the polynomial trend, the Hurst index, and in some cases (linear trends for BDMA and FDMA) the length of the time series. In all cases, the BDMA and the FDMA behave almost the same under the influence of constant shifts or linear trends. Extensive numerical experiments confirm excellently the analytical derivations. We conclude that the CDMA method outperforms the BDMA and FDMA methods in the presence of polynomial trends.
---
中文摘要:
去趋势移动平均(DMA)算法是量化非平稳时间序列中长期相关性的最佳方法之一。现实系统中的许多长期相关时间序列包含各种趋势。我们研究了多项式趋势对三种广泛使用的DMA方法(反向算法(BDMA)、中心算法(CDMA)和前向算法(FDMA)的缩放行为和性能的影响。我们推导了多项式趋势的一般框架,并得到了常数位移和线性趋势的分析结果。我们发现CDMA方法的行为不受恒定位移的影响。相比之下,线性趋势会导致CDMA波动函数发生交叉。我们还发现,恒定位移和线性趋势会导致从BDMA和FDMA方法获得的波动函数发生交叉。当存在交叉时,小尺度下的标度行为来自于内在时间序列,而大尺度下的标度行为则由恒定位移或线性趋势控制。我们还解析地推导了交叉尺度的表达式,并表明交叉尺度取决于多项式趋势的强度、赫斯特指数,以及在某些情况下(BDMA和FDMA的线性趋势)时间序列的长度。在所有情况下,BDMA和FDMA在恒定位移或线性趋势的影响下表现几乎相同。大量的数值实验很好地证实了解析推导。我们得出结论,在多项式趋势存在的情况下,CDMA方法优于BDMA和FDMA方法。
---
分类信息:
一级分类:Physics 物理学
二级分类:Data Analysis, Statistics and Probability
数据分析、统计与概率
分类描述:Methods, software and hardware for physics data analysis: data processing and storage; measurement methodology; statistical and mathematical aspects such as parametrization and uncertainties.
物理数据分析的方法、软硬件:数据处理与存储;测量方法;统计和数学方面,如参数化和不确定性。
--
一级分类:Physics 物理学
二级分类:Physics and Society 物理学与社会
分类描述:Structure, dynamics and collective behavior of societies and groups (human or otherwise). Quantitative analysis of social networks and other complex networks. Physics and engineering of infrastructure and systems of broad societal impact (e.g., energy grids, transportation networks).
社会和团体(人类或其他)的结构、动态和集体行为。社会网络和其他复杂网络的定量分析。具有广泛社会影响的基础设施和系统(如能源网、运输网络)的物理和工程。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
---
PDF下载:
-->