设bω∈Ohm假设bω不在Ps中-空集NR∪bNs、 eω∪NXj∪Neω和定义Xjeω(bω):=Xs,ωtX(eω),uj(bω)-Xj(bω)s、 T.取eω′=eωsbω∈NR∪bNcin(7.54),我们从(2.3),(7.44),(u3),(2.1)以及(7.4)的第二等式的类比中看到,Ξs,eωj(bω)=Rt,ωτ、 bγjbX(eω)sbω)= Rt、 τbX(eω)sbω), bγjbX(eω)sbω), ω TbX(eω)sbω)= Rt、 bτ(eω)sbω),νj(eω)sbω),ωTbX(eω)sbω)= Rt、 bτs,eω(bω),j(bω),ωTbX(eω)sbω)= Rt、 ζeωXj(bω), Xj(bω), ω TX(eω)sXs,ωtX(eω),uj(bω)≤Rt、 ζeωXj(bω), Xj(bω),ω tX(eω)s(Xj(bω)+(1+T)Xjeω(bω)= Rs、 ζeωXj(bω), Xj(bω),ωtX(eω)s(Xj(bω)+Zstgr(ωtX(eω)s(Xj(bω))dr+(1+T)Xjeω(bω)=Rs,ωtX(eω)(ζeω,)Xj(bω)+Zstgrω tX(eω)dr+(1+T)Xjeω(bω).自从Xjeω(bω)≤ 1.Xjeω(bω)≤δ1/2δ1/2+1.Xjeω(bω)>δ1/2κδ-1/2Xjeω(bω)+Xjeω(bω)+1., (5.2)表明Ξs,eωj≤ 埃什Rs,ωtX(eω)(ζeω,)(Xj)i+Zstgt,ωrX(eω)dr+(1+T)δ1/2+(1+T)κδ-1/2CT kωtX(eω)-ωteωjk0,s+C+1T+1kΩtX(eω)-ωteωjk+10,s. (7.57)b组(δ) :=δ+(1+T)δ1/2+(1+T)κCTδ1/2+C+1T+1δ+1/2. 作为eω∈AXj=X-1(Aj),即X(eω)∈AjOsδj(eωj),一个有kωtX(eω)-ωteωjk0,s=kX(eω)-eωjkt,s<δj≤δ. 它允许从m(7.57)开始Ξs,eωj≤ EpjhRs,ωtX(eω)(ζeω,)i+Zstgt,ωrX(eω)dr+b(δ) - δ≤ sup∈Ts(n)EPjhRs,ωtX(eω)(),)i+Zstgt,ωrX(eω)dr+b(δ) - δ. (7.58*)将其插入(7.56),我们看到fr om(7.51)和(u1)λXj=1EbPA.∩AjRt,ωτ、 γj≤λXj=1Eth{eω∈十、-1(A)∩十、-1(Aj)}sup∈Ts(n)EPjhRs,ωtX(eω)(),)i+Zstgt,ωrX(eω)dr+b(δ)-δi+δ=λXj=1Eph{eω∈A.∩Aj}sup∈Ts(n)EPjhRs,ωteω(),)i+Zstgt,ωr(eω)dr+b(δ)-δi+δ=λXj=1EPh{eω∈A.∩Aj}sup∈Ts(n)EPjhRs,ωteω(),)i+Zstgt,ωr(eω)dri+P(A)∩Ac)(b)(δ)-δ)+δ.在上一个等式中,我们使用了映射eω→ sup∈Ts(n)EPjhRs,ωteω(),)iis在无rmk kt和FtT的情况下连续运行-可通过备注2.2(2)进行测量。