英文标题:
《Disentangling bipartite and core-periphery structure in financial
networks》
---
作者:
Paolo Barucca and Fabrizio Lillo
---
最新提交年份:
2015
---
英文摘要:
A growing number of systems are represented as networks whose architecture conveys significant information and determines many of their properties. Examples of network architecture include modular, bipartite, and core-periphery structures. However inferring the network structure is a non trivial task and can depend sometimes on the chosen null model. Here we propose a method for classifying network structures and ranking its nodes in a statistically well-grounded fashion. The method is based on the use of Belief Propagation for learning through Entropy Maximization on both the Stochastic Block Model (SBM) and the degree-corrected Stochastic Block Model (dcSBM). As a specific application we show how the combined use of the two ensembles -SBM and dcSBM- allows to disentangle the bipartite and the core-periphery structure in the case of the e-MID interbank network. Specifically we find that, taking into account the degree, this interbank network is better described by a bipartite structure, while using the SBM the core-periphery structure emerges only when data are aggregated for more than a week.
---
中文摘要:
越来越多的系统被表示为网络,其体系结构传递重要信息并决定其许多属性。网络架构的例子包括模块化结构、二部结构和核心-外围结构。然而,推断网络结构是一项非常重要的任务,有时可能取决于所选的空模型。在这里,我们提出了一种方法,用于对网络结构进行分类,并以一种基于统计的方式对其节点进行排序。该方法基于在随机块模型(SBM)和度校正随机块模型(dcSBM)上通过熵最大化使用信念传播进行学习。作为一个具体的应用,我们展示了如何结合使用这两个集成——SBM和dcSBM——在e-MID银行间网络的情况下,将二者和核心-外围结构分离开来。具体而言,我们发现,考虑到程度,这种银行间网络最好用二分结构来描述,而使用SBM,只有当数据聚合超过一周时,才会出现核心-外围结构。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:General Finance 一般财务
分类描述:Development of general quantitative methodologies with applications in finance
通用定量方法的发展及其在金融中的应用
--
一级分类:Physics 物理学
二级分类:Data Analysis, Statistics and Probability
数据分析、统计与概率
分类描述:Methods, software and hardware for physics data analysis: data processing and storage; measurement methodology; statistical and mathematical aspects such as parametrization and uncertainties.
物理数据分析的方法、软硬件:数据处理与存储;测量方法;统计和数学方面,如参数化和不确定性。
--
一级分类:Physics 物理学
二级分类:Physics and Society 物理学与社会
分类描述:Structure, dynamics and collective behavior of societies and groups (human or otherwise). Quantitative analysis of social networks and other complex networks. Physics and engineering of infrastructure and systems of broad societal impact (e.g., energy grids, transportation networks).
社会和团体(人类或其他)的结构、动态和集体行为。社会网络和其他复杂网络的定量分析。具有广泛社会影响的基础设施和系统(如能源网、运输网络)的物理和工程。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
---
PDF下载:
-->