英文标题:
《Some Contra-Arguments for the Use of Stable Distributions in Financial
Modeling》
---
作者:
Lev B. Klebanov, Greg Temnov, Ashot V. Kakosyan
---
最新提交年份:
2016
---
英文摘要:
In the present paper, we discuss contra-arguments concerning the use of Pareto-Lev\\\'y distributions for modeling in Finance. It appears that such probability laws do not provide sufficient number of outliers observed in real data. Connection with the classical limit theorem for heavy-tailed distributions with such type of models is also questionable. The idea of alternative modeling is given.
---
中文摘要:
在本文中,我们讨论了有关使用帕累托-列维分布进行金融建模的相反观点。这样的概率定律似乎不能提供足够数量的实际数据中观察到的异常值。与这类模型的重尾分布的经典极限定理的联系也值得怀疑。给出了替代建模的思想。
---
分类信息:
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->