英文标题:
《Modeling Stock Price Dynamics with Fuzzy Opinion Networks》
---
作者:
Li-Xin Wang
---
最新提交年份:
2016
---
英文摘要:
We propose a mathematical model for the word-of-mouth communications among stock investors through social networks and explore how the changes of the investors\' social networks influence the stock price dynamics and vice versa. An investor is modeled as a Gaussian fuzzy set (a fuzzy opinion) with the center and standard deviation as inputs and the fuzzy set itself as output. Investors are connected in the following fashion: the center input of an investor is taken as the average of the neighbors\' outputs, where two investors are neighbors if their fuzzy opinions are close enough to each other, and the standard deviation (uncertainty) input is taken with local, global or external reference schemes to model different scenarios of how investors define uncertainties. The centers and standard deviations of the fuzzy opinions are the expected prices and their uncertainties, respectively, that are used as inputs to the price dynamic equation. We prove that with the local reference scheme the investors converge to different groups in finite time, while with the global or external reference schemes all investors converge to a consensus within finite time and the consensus may change with time in the external reference case. We show how to model trend followers, contrarians and manipulators within this mathematical framework and prove that the biggest enemy of a manipulator is the other manipulators. We perform Monte Carlo simulations to show how the model parameters influence the price dynamics, and we apply a modified version of the model to the daily closing prices of fifteen top banking and real estate stocks in Hong Kong for the recent two years from Dec. 5, 2013 to Dec. 4, 2015 and discover that a sharp increase of the combined uncertainty is a reliable signal to predict the reversal of the current price trend.
---
中文摘要:
我们提出了一个股票投资者通过社交网络进行口碑传播的数学模型,并探讨了投资者社交网络的变化如何影响股票价格动态,反之亦然。投资者被建模为高斯模糊集(模糊意见),以中心和标准差作为输入,模糊集本身作为输出。投资者之间的联系方式如下:投资者的中心输入被视为邻居输出的平均值,其中,如果两个投资者的模糊观点彼此足够接近,则两个投资者是邻居,标准偏差(不确定性)输入采用局部、全局或外部参考方案,以模拟投资者如何定义不确定性的不同场景。模糊意见的中心和标准差分别是预期价格及其不确定性,作为价格动态方程的输入。我们证明了在局部参考方案下,投资者在有限时间内收敛到不同的群体,而在全局或外部参考方案下,所有投资者在有限时间内收敛到一个共识,并且在外部参考情况下,共识可能随时间而变化。我们展示了如何在这个数学框架内建模趋势跟随者、反向者和操纵者,并证明操纵者的最大敌人是其他操纵者。我们进行蒙特卡罗模拟,以显示模型参数如何影响价格动态,并将模型的修改版本应用于2013年12月5日至12月4日近两年香港15只顶级银行和房地产股票的每日收盘价,2015年,我们发现组合不确定性的急剧增加是预测当前价格趋势逆转的可靠信号。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Trading and Market Microstructure 交易与市场微观结构
分类描述:Market microstructure, liquidity, exchange and auction design, automated trading, agent-based modeling and market-making
市场微观结构,流动性,交易和拍卖设计,自动化交易,基于代理的建模和做市
--
一级分类:Computer Science 计算机科学
二级分类:Social and Information Networks 社会和信息网络
分类描述:Covers the design, analysis, and modeling of social and information networks, including their applications for on-line information access, communication, and interaction, and their roles as datasets in the exploration of questions in these and other domains, including connections to the social and biological sciences. Analysis and modeling of such networks includes topics in ACM Subject classes F.2, G.2, G.3, H.2, and I.2; applications in computing include topics in H.3, H.4, and H.5; and applications at the interface of computing and other disciplines include topics in J.1--J.7. Papers on computer communication systems and network protocols (e.g. TCP/IP) are generally a closer fit to the Networking and Internet Architecture (cs.NI) category.
涵盖社会和信息网络的设计、分析和建模,包括它们在联机信息访问、通信和交互方面的应用,以及它们作为数据集在这些领域和其他领域的问题探索中的作用,包括与社会和生物科学的联系。这类网络的分析和建模包括ACM学科类F.2、G.2、G.3、H.2和I.2的主题;计算应用包括H.3、H.4和H.5中的主题;计算和其他学科接口的应用程序包括J.1-J.7中的主题。关于计算机通信系统和网络协议(例如TCP/IP)的论文通常更适合网络和因特网体系结构(CS.NI)类别。
--
一级分类:Computer Science 计算机科学
二级分类:Systems and Control 系统与控制
分类描述:cs.SY is an alias for eess.SY. This section includes theoretical and experimental research covering all facets of automatic control systems. The section is focused on methods of control system analysis and design using tools of modeling, simulation and optimization. Specific areas of research include nonlinear, distributed, adaptive, stochastic and robust control in addition to hybrid and discrete event systems. Application areas include automotive and aerospace control systems, network control, biological systems, multiagent and cooperative control, robotics, reinforcement learning, sensor networks, control of cyber-physical and energy-related systems, and control of computing systems.
cs.sy是eess.sy的别名。本部分包括理论和实验研究,涵盖了自动控制系统的各个方面。本节主要介绍利用建模、仿真和优化工具进行控制系统分析和设计的方法。具体研究领域包括非线性、分布式、自适应、随机和鲁棒控制,以及混合和离散事件系统。应用领域包括汽车和航空航天控制系统、网络控制、生物系统、多智能体和协作控制、机器人学、强化学习、传感器网络、信息物理和能源相关系统的控制以及计算系统的控制。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
PDF下载:
-->