英文标题:
《Systematic and multifactor risk models revisited》
---
作者:
Michel Fliess (LIX, AL.I.E.N.), C\\\'edric Join (AL.I.E.N., CRAN, INRIA
  Lille - Nord Europe)
---
最新提交年份:
2013
---
英文摘要:
  Systematic and multifactor risk models are revisited via methods which were already successfully developed in signal processing and in automatic control. The results, which bypass the usual criticisms on those risk modeling, are illustrated by several successful computer experiments. 
---
中文摘要:
通过在信号处理和自动控制领域已经成功开发的方法,重新审视系统和多因素风险模型。这些结果绕过了通常对这些风险模型的批评,并通过几次成功的计算机实验加以说明。
---
分类信息:
一级分类:Quantitative Finance        数量金融学
二级分类:Risk Management        风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
一级分类:Computer Science        计算机科学
二级分类:Computational Engineering, Finance, and Science        计算工程、金融和科学
分类描述:Covers applications of computer science to the mathematical modeling of complex systems in the fields of science, engineering, and finance. Papers here are interdisciplinary and applications-oriented, focusing on techniques and tools that enable challenging computational simulations to be performed, for which the use of supercomputers or distributed computing platforms is often required. Includes material in ACM Subject Classes J.2, J.3, and J.4 (economics).
涵盖了计算机科学在科学、工程和金融领域复杂系统的数学建模中的应用。这里的论文是跨学科和面向应用的,集中在技术和工具,使挑战性的计算模拟能够执行,其中往往需要使用超级计算机或分布式计算平台。包括ACM学科课程J.2、J.3和J.4(经济学)中的材料。
--
一级分类:Mathematics        数学
二级分类:Logic        逻辑
分类描述:Logic, set theory, point-set topology, formal mathematics
逻辑,集合论,点集拓扑,形式数学
--
一级分类:Quantitative Finance        数量金融学
二级分类:Computational Finance        计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Statistics        统计学
二级分类:Machine Learning        
机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
PDF下载:
-->