英文标题:
《What does past correlation structure tell us about the future? An answer
  from network filtering》
---
作者:
Nicol\\\'o Musmeci, Tomaso Aste, Tiziana Di Matteo
---
最新提交年份:
2016
---
英文摘要:
  We discovered that past changes in the market correlation structure are significantly related with future changes in the market volatility. By using correlation-based information filtering networks we device a new tool for forecasting the market volatility changes. In particular, we introduce a new measure, the \"correlation structure persistence\", that quantifies the rate of change of the market dependence structure. This measure shows a deep interplay with changes in volatility and we demonstrate it can anticipate market risk variations. Notably, our method overcomes the curse of dimensionality that limits the applicability of traditional econometric tools to portfolios made of a large number of assets. We report on forecasting performances and statistical significance of this tool for two different equity datasets. We also identify an optimal region of parameters in terms of True Positive and False Positive trade-off, through a ROC curve analysis. We find that our forecasting method is robust and it outperforms predictors based on past volatility only. Moreover the temporal analysis indicates that our method is able to adapt to abrupt changes in the market, such as financial crises, more rapidly than methods based on past volatility. 
---
中文摘要:
我们发现,过去市场相关性结构的变化与未来市场波动性的变化显著相关。通过使用基于相关性的信息过滤网络,我们设计了一种预测市场波动变化的新工具。特别是,我们引入了一种新的度量方法“相关性结构持续性”,它量化了市场依赖结构的变化率。这一指标显示了波动性变化的深刻相互作用,我们证明它可以预测市场风险变化。值得注意的是,我们的方法克服了维度诅咒,维度诅咒限制了传统计量经济学工具对由大量资产组成的投资组合的适用性。我们报告了该工具对两个不同股票数据集的预测性能和统计显著性。我们还通过ROC曲线分析,根据真阳性和假阳性权衡确定了参数的最佳区域。我们发现,我们的预测方法是稳健的,它优于仅基于过去波动率的预测。此外,时间分析表明,与基于过去波动率的方法相比,我们的方法能够更快地适应市场的突然变化,如金融危机。
---
分类信息:
一级分类:Quantitative Finance        数量金融学
二级分类:Portfolio Management        项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
---
PDF下载:
-->