英文标题:
《Towards a taxonomy of learning dynamics in 2 x 2 games》
---
作者:
Marco Pangallo, James Sanders, Tobias Galla and Doyne Farmer
---
最新提交年份:
2021
---
英文摘要:
Do boundedly rational players learn to choose equilibrium strategies as they play a game repeatedly? A large literature in behavioral game theory has proposed and experimentally tested various learning algorithms, but a comparative analysis of their equilibrium convergence properties is lacking. In this paper we analyze Experience-Weighted Attraction (EWA), which generalizes fictitious play, best-response dynamics, reinforcement learning and also replicator dynamics. Studying $2\\times 2$ games for tractability, we recover some well-known results in the limiting cases in which EWA reduces to the learning rules that it generalizes, but also obtain new results for other parameterizations. For example, we show that in coordination games EWA may only converge to the Pareto-efficient equilibrium, never reaching the Pareto-inefficient one; that in Prisoner Dilemma games it may converge to fixed points of mutual cooperation; and that limit cycles or chaotic dynamics may be more likely with longer or shorter memory of previous play.
---
中文摘要:
无限理性的玩家是否在反复玩游戏时学会了选择均衡策略?行为博弈论中的大量文献提出并实验测试了各种学习算法,但缺乏对其均衡收敛特性的比较分析。在本文中,我们分析了经验加权吸引(EWA),它概括了虚拟游戏、最佳反应动力学、强化学习以及复制子动力学。通过研究$2×2$博弈的可处理性,我们在极限情况下恢复了一些众所周知的结果,其中EWA简化为它推广的学习规则,但也获得了其他参数化的新结果。例如,我们证明了在协调博弈中,EWA可能只会收敛到帕累托有效均衡,而不会达到帕累托无效均衡;在囚徒困境博弈中,它可能会收敛到相互合作的固定点;而极限环或混沌动力学可能更可能与之前播放的较长或较短的记忆有关。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Economics 经济学
分类描述:q-fin.EC is an alias for econ.GN. Economics, including micro and macro economics, international economics, theory of the firm, labor economics, and other economic topics outside finance
q-fin.ec是econ.gn的别名。经济学,包括微观和宏观经济学、国际经济学、企业理论、劳动经济学和其他金融以外的经济专题
--
一级分类:Physics 物理学
二级分类:Chaotic Dynamics 混沌动力学
分类描述:Dynamical systems, chaos, quantum chaos, topological dynamics, cycle expansions, turbulence, propagation
动力系统,混沌,量子混沌,拓扑动力学,循环展开,湍流,传播
--
---
PDF下载:
-->