英文标题:
《News Co-Occurrence, Attention Spillover and Return Predictability》
---
作者:
Li Guo and Lin Peng and Yubo Tao and Jun Tu
---
最新提交年份:
2018
---
英文摘要:
We examine the effect of investor attention spillover on stock return predictability. Using a novel measure, the News Network Triggered Attention index (NNTA), we find that NNTA negatively predicts market returns with a monthly in(out)-of-sample R-square of 5.97% (5.80%). In the cross-section, a long-short portfolio based on news co-occurrence generates a significant monthly alpha of 68 basis points. The results are robust to the inclusion of alternative attention proxies, sentiment measures, other news- and information-based predictors, across recession and expansion periods. We further validate the attention spillover effect by showing that news co-mentioning leads to greater increases in Google and Bloomberg search volumes than unconditional news coverage. Our findings suggest that attention spillover in a news-based network can lead to significant stock market overvaluations, and especially when arbitrage is limited.
---
中文摘要:
我们检验了投资者注意力溢出对股票收益可预测性的影响。使用一种新的测量方法,即新闻网触发注意力指数(NNTA),我们发现NNTA对市场回报率的预测为负,每月样本内(外)R平方为5.97%(5.80%)。在横截面上,基于新闻共现的多空投资组合每月产生68个基点的显著阿尔法。在经济衰退和经济扩张期间,研究结果对替代性注意力指标、情绪测量、其他基于新闻和信息的预测指标的纳入非常可靠。我们进一步验证了注意力溢出效应,表明新闻联名比无条件新闻报道更能增加谷歌和彭博社的搜索量。我们的研究结果表明,在一个以新闻为基础的网络中,注意力溢出会导致股市大幅高估,尤其是在套利有限的情况下。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
---
PDF下载:
-->