英文标题:
《Stock Trading via Feedback Control: Stochastic Model Predictive or
Genetic?》
---
作者:
Mogens Graf Plessen, Alberto Bemporad
---
最新提交年份:
2017
---
英文摘要:
We seek a discussion about the most suitable feedback control structure for stock trading under the consideration of proportional transaction costs. Suitability refers to robustness and performance capability. Both are tested by considering different one-step ahead prediction qualities, including the ideal case, correct prediction of the direction of change in daily stock prices and the worst-case. Feedback control structures are partitioned into two general classes: stochastic model predictive control (SMPC) and genetic. For the former class three controllers are discussed, whereby it is distinguished between two Markowitz- and one dynamic hedging-inspired SMPC formulation. For the latter class five trading algorithms are disucssed, whereby it is distinguished between two different moving average (MA) based, two trading range (TR) based, and one strategy based on historical optimal (HistOpt) trajectories. This paper also gives a preliminary discussion about how modified dynamic hedging-inspired SMPC formulations may serve as alternatives to Markowitz portfolio optimization. The combinations of all of the eight controllers with five different one-step ahead prediction methods are backtested for daily trading of the 30 components of the German stock market index DAX for the time period between November 27, 2015 and November 25, 2016.
---
中文摘要:
我们寻求在考虑比例交易成本的情况下,对股票交易最合适的反馈控制结构进行讨论。适用性是指稳健性和性能能力。通过考虑不同的提前一步预测质量,包括理想情况、每日股价变化方向的正确预测和最坏情况,对两者进行测试。反馈控制结构分为两大类:随机模型预测控制(SMPC)和遗传控制。对于前一类,讨论了三个控制器,从而区分了两个Markowitz和一个动态对冲启发的SMPC公式。对于后一类,将讨论五种交易算法,从而区分两种不同的基于移动平均(MA)的、两种基于交易区间(TR)的和一种基于历史最优(HistOpt)轨迹的策略。本文还初步讨论了基于动态套期保值的SMPC公式如何作为马科维茨投资组合优化的替代方案。针对2015年11月27日至2016年11月25日期间德国股市指数DAX的30个组成部分的每日交易,对所有八个控制器与五种不同的一步预测方法的组合进行了回溯测试。
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Computational Engineering, Finance, and Science 计算工程、金融和科学
分类描述:Covers applications of computer science to the mathematical modeling of complex systems in the fields of science, engineering, and finance. Papers here are interdisciplinary and applications-oriented, focusing on techniques and tools that enable challenging computational simulations to be performed, for which the use of supercomputers or distributed computing platforms is often required. Includes material in ACM Subject Classes J.2, J.3, and J.4 (economics).
涵盖了计算机科学在科学、工程和金融领域复杂系统的数学建模中的应用。这里的论文是跨学科和面向应用的,集中在技术和工具,使挑战性的计算模拟能够执行,其中往往需要使用超级计算机或分布式计算平台。包括ACM学科课程J.2、J.3和J.4(经济学)中的材料。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Trading and Market Microstructure 交易与市场微观结构
分类描述:Market microstructure, liquidity, exchange and auction design, automated trading, agent-based modeling and market-making
市场微观结构,流动性,交易和拍卖设计,自动化交易,基于代理的建模和做市
--
---
PDF下载:
-->