我们可以写2yσy+2δy+b=σ·2y+4δ3σy+4δ3σy+2bσ-8δ3σ·y+4δ3σy+2bσ。我们有(-u) 2y+4δ3σy+4δ3σy+2bσdy=“对数y+4δ3σy+2bσ#y型=(-u) y=0=对数σ2b(-u) +2δ3b(-u) +1个.此外,使用y+4δ3σy+2bσ=y+2δ3σ+2bσ-4δ9σ,我们得到zy+4δ3σy+2bσdy=q2bσ-4δ9σ弧长+2δ3σq2bσ-4δ9σ!+ C如果b∈2δ9σ, ∞,-y+2δ3σ+C,如果b=2δ9σ,q4δ9σ-2bσ对数y+2δ3σ-q4δ9σ-2bσy+2δ3σ+q4δ9σ-2bσ!+ C如果b∈0,2δ9σ,其中C∈ R、 如果b∈2δ9σ, ∞和σ∈ R++然后,应用公式arctan(u)- arctan(v)=arctanu-v1+uv, u、 五∈ R+,我们得到(-u) y+4δ3σy+2bσdy=q2bσ-4δ9σ阿尔茨坦(-u) +2δ3σq2bσ-4δ9σ!- arctan2δ3σq2bσ-4δ9σ!=q2bσ-4δ9σarctanq2bσ-4δ9σ2bσ(-u)-+2δ3σ,和henceZ∞euyπ(dy)=σ2b(-u) +2δ3b(-u) +1个-2aσexp8aδ3σq2bσ-4δ9σarctanq2bσ-4δ9σ2bσ(-u)-+2δ3σ.如果b=2δ9σ和σ∈ R++,然后是Z(-u) y+4δ3σy+2bσdy=-(-u) +2δ3σ+2δ3σ=(-u)(-u) +2δ3σ=1+2δ3σ(-u)-,和henceZ∞euyπ(dy)=9σ4δ(-u) +3σδ(-u) +1个-2aσexp(8aδ3σ1+2δ3σ(-u)-).如果b∈0,2δ9σ和σ∈ R++,然后是Z(-u) y+4δ3σy+2bσdy=q4δ9σ-2bσ日志(-u) +2δ3σ-q4δ9σ-2bσ(-u) +2δ3σ+q4δ9σ-2bσ- 日志2δ3σ-q4δ9σ-2bσ2δ3σ+q4δ9σ-2bσ=q4δ9σ-2bσ对数(-u)2δ3σ+q4δ9σ-2bσ+2bσ(-u)2δ3σ-q4δ9σ-2bσ+2bσ,和henceZ∞euyπ(dy)=σ2b(-u) +2δ3b(-u) +1个-2aσ(-u)2δ3σ+q4δ9σ-2bσ+2bσ(-u)2δ3σ-q4δ9σ-2bσ+2bσ8aδ3σr4δ9σ-2bσ。接下来我们考虑b的情况∈ R++和σ=0。然后我们可以写2y2δy+b=δ-9b2δy+3b2δ,thusZ(-u) 2y2δy+bdy=δ(-u)-9b2δ日志(-u) +3b2δ- 日志3b2δ=δ(-u)-9b2δ测井2δ3b(-u) +1个,和henceZ∞euyπ(dy)=exp-3aδ(-u)1+2δ3b(-u)9ba2δ。接下来我们考虑b=0和σ的情况∈ R++。让u∈ R-. 根据定理2.5,Z∞euyπ(dy)=exp-亚利桑那州-uσx+2δxdx.通过替换x=y,Z-uσx+2δxdx=Z(-u) 2yσy+2δydy=Z(-u) σy+2δdy。因此,Z(-u) σy+2δdy=“σlogy+4δ3σ#y型=(-u) y=0=σlog(-u) +4δ3σ-σ对数4δ3σ=σ对数3σ4δ(-u) +1个,亨塞兹∞euyπ(dy)=3σ4δ(-u) +1个-4aσ。最后,通过定理2.5的证明,如果b=0,σ=0,α=,则r∞euyπ(dy)=exp{-3aδ3/2(-u) 1/2},u∈ R-.