英文标题:
《An Optimal Dividend Problem with Capital Injections over a Finite
Horizon》
---
作者:
Giorgio Ferrari, Patrick Schuhmann
---
最新提交年份:
2019
---
英文摘要:
In this paper we propose and solve an optimal dividend problem with capital injections over a finite time horizon. The surplus dynamics obeys a linearly controlled drifted Brownian motion that is reflected at the origin, dividends give rise to time-dependent instantaneous marginal profits, whereas capital injections are subject to time-dependent instantaneous marginal costs. The aim is to maximize the sum of a liquidation value at terminal time and of the total expected profits from dividends, net of the total expected costs for capital injections. Inspired by the study of El Karoui and Karatzas (1989) on reflected follower problems, we relate the optimal dividend problem with capital injections to an optimal stopping problem for a drifted Brownian motion that is absorbed at the origin. We show that whenever the optimal stopping rule is triggered by a time-dependent boundary, the value function of the optimal stopping problem gives the derivative of the value function of the optimal dividend problem. Moreover, the optimal dividend strategy is also triggered by the moving boundary of the associated stopping problem. The properties of this boundary are then investigated in a case study in which instantaneous marginal profits and costs from dividends and capital injections are constants discounted at a constant rate.
---
中文摘要:
在本文中,我们提出并解决了有限时间内注资的最优股利问题。盈余动态服从一个线性控制的漂移布朗运动,该运动反映在原点,股息产生与时间相关的瞬时边际利润,而注资受制于与时间相关的瞬时边际成本。其目的是使最终清算价值与股息预期利润总额之和(扣除注资预期成本总额)最大化。受El Karoui和Karatzas(1989)关于反射跟随者问题的研究的启发,我们将注资的最优股息问题与原点吸收的漂移布朗运动的最优停止问题联系起来。我们证明了当最优停止规则由时间相关边界触发时,最优停止问题的值函数给出了最优分红问题的值函数的导数。此外,最优红利策略也由相关停止问题的移动边界触发。然后在一个案例研究中研究了该边界的性质,其中股息和注资的瞬时边际利润和成本是以恒定速率贴现的常数。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
PDF下载:
-->