英文标题:
《Optimal investment with transient price impact》
---
作者:
Peter Bank and Moritz Vo{\\ss}
---
最新提交年份:
2018
---
英文摘要:
We introduce a price impact model which accounts for finite market depth, tightness and resilience. Its coupled bid- and ask-price dynamics induce convex liquidity costs. We provide existence of an optimal solution to the classical problem of maximizing expected utility from terminal liquidation wealth at a finite planning horizon. In the specific case when market uncertainty is generated by an arithmetic Brownian motion with drift and the investor exhibits constant absolute risk aversion, we show that the resulting singular optimal stochastic control problem readily reduces to a deterministic optimal tracking problem of the optimal frictionless constant Merton portfolio in the presence of convex costs. Rather than studying the associated Hamilton-Jacobi-Bellmann PDE, we exploit convex analytic and calculus of variations techniques allowing us to construct the solution explicitly and to describe the free boundaries of the action- and non-action regions in the underlying state space. As expected, it is optimal to trade towards the frictionless Merton position, taking into account the initial bid-ask spread as well as the optimal liquidation of the accrued position when approaching terminal time. It turns out that this leads to a surprisingly rich phenomenology of possible trajectories for the optimal share holdings.
---
中文摘要:
我们引入了一个价格影响模型,该模型考虑了有限的市场深度、紧密性和弹性。其耦合的买卖价格动态导致凸流动性成本。我们给出了在有限规划范围内,终端清算财富期望效用最大化的经典问题的最优解的存在性。在特定情况下,当市场不确定性由带漂移的算术布朗运动产生,且投资者表现出恒定的绝对风险厌恶时,我们证明了由此产生的奇异最优随机控制问题很容易退化为凸成本下最优无摩擦常数Merton投资组合的确定性最优跟踪问题。我们没有研究相关的Hamilton-Jacobi-Bellmann偏微分方程,而是利用凸分析和变分法技术来明确构造解,并描述底层状态空间中作用区域和非作用区域的自由边界。正如预期的那样,考虑到初始买卖价差以及接近终点时应计头寸的最佳清算,向无摩擦默顿头寸交易是最佳选择。事实证明,这导致了一个令人惊讶的丰富现象,即最优持股的可能轨迹。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->