英文标题:
《Nonlinearity in stock networks》
---
作者:
David Hartman, Jaroslav Hlinka
---
最新提交年份:
2018
---
英文摘要:
Stock networks, constructed from stock price time series, are a well-established tool for the characterization of complex behavior in stock markets. Following Mantegna\'s seminal paper, the linear Pearson\'s correlation coefficient between pairs of stocks has been the usual way to determine network edges. Recently, possible effects of nonlinearity on the graph-theoretical properties of such networks have been demonstrated when using nonlinear measures such as mutual information instead of linear correlation. In this paper, we quantitatively characterize the nonlinearity in stock time series and the effect it has on stock network properties. This is achieved by a systematic multi-step approach that allows us to quantify the nonlinearity of coupling; correct its effects wherever it is caused by simple univariate non-Gaussianity; potentially localize in space and time any remaining strong sources of this nonlinearity; and, finally, study the effect nonlinearity has on global network properties. By applying this multi-step approach to stocks included in three prominent indices (NYSE100, FTSE100 and SP500), we establish that the apparent nonlinearity that has been observed is largely due to univariate non-Gaussianity. Furthermore, strong nonstationarity in a few specific stocks may play a role. In particular, the sharp decrease in some stocks during the global financial crisis of 2008 gives rise to apparent nonlinear dependencies among stocks.
---
中文摘要:
股票网络是由股票价格时间序列构建的,是描述股票市场复杂行为的成熟工具。继Mantegna的开创性论文之后,股票对之间的线性Pearson相关系数一直是确定网络边缘的常用方法。最近,当使用互信息等非线性度量代替线性相关时,非线性可能对此类网络的图论性质产生影响。本文定量地刻画了股票时间序列的非线性及其对股票网络性质的影响。这是通过系统的多步骤方法实现的,该方法允许我们量化耦合的非线性;纠正由简单的单变量非高斯性引起的影响;潜在地在空间和时间上定位这种非线性的任何剩余强源;最后,研究了非线性对全局网络性能的影响。通过将这种多步骤方法应用于三大主要指数(NYSE100、FTSE100和SP500)中的股票,我们确定,观察到的明显非线性主要是由于单变量非高斯性。此外,少数特定股票中的强非平稳性也可能起到一定作用。特别是,2008年全球金融危机期间,一些股票大幅下跌,导致股票之间存在明显的非线性依赖关系。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Computer Science 计算机科学
二级分类:Social and Information Networks 社会和信息网络
分类描述:Covers the design, analysis, and modeling of social and information networks, including their applications for on-line information access, communication, and interaction, and their roles as datasets in the exploration of questions in these and other domains, including connections to the social and biological sciences. Analysis and modeling of such networks includes topics in ACM Subject classes F.2, G.2, G.3, H.2, and I.2; applications in computing include topics in H.3, H.4, and H.5; and applications at the interface of computing and other disciplines include topics in J.1--J.7. Papers on computer communication systems and network protocols (e.g. TCP/IP) are generally a closer fit to the Networking and Internet Architecture (cs.NI) category.
涵盖社会和信息网络的设计、分析和建模,包括它们在联机信息访问、通信和交互方面的应用,以及它们作为数据集在这些领域和其他领域的问题探索中的作用,包括与社会和生物科学的联系。这类网络的分析和建模包括ACM学科类F.2、G.2、G.3、H.2和I.2的主题;计算应用包括H.3、H.4和H.5中的主题;计算和其他学科接口的应用程序包括J.1-J.7中的主题。关于计算机通信系统和网络协议(例如TCP/IP)的论文通常更适合网络和因特网体系结构(CS.NI)类别。
--
一级分类:Physics 物理学
二级分类:Physics and Society 物理学与社会
分类描述:Structure, dynamics and collective behavior of societies and groups (human or otherwise). Quantitative analysis of social networks and other complex networks. Physics and engineering of infrastructure and systems of broad societal impact (e.g., energy grids, transportation networks).
社会和团体(人类或其他)的结构、动态和集体行为。社会网络和其他复杂网络的定量分析。具有广泛社会影响的基础设施和系统(如能源网、运输网络)的物理和工程。
--
---
PDF下载:
-->