英文标题:
《Financial Risk and Returns Prediction with Modular Networked Learning》
---
作者:
Carlos Pedro Gon\\c{c}alves
---
最新提交年份:
2018
---
英文摘要:
An artificial agent for financial risk and returns\' prediction is built with a modular cognitive system comprised of interconnected recurrent neural networks, such that the agent learns to predict the financial returns, and learns to predict the squared deviation around these predicted returns. These two expectations are used to build a volatility-sensitive interval prediction for financial returns, which is evaluated on three major financial indices and shown to be able to predict financial returns with higher than 80% success rate in interval prediction in both training and testing, raising into question the Efficient Market Hypothesis. The agent is introduced as an example of a class of artificial intelligent systems that are equipped with a Modular Networked Learning cognitive system, defined as an integrated networked system of machine learning modules, where each module constitutes a functional unit that is trained for a given specific task that solves a subproblem of a complex main problem expressed as a network of linked subproblems. In the case of neural networks, these systems function as a form of an \"artificial brain\", where each module is like a specialized brain region comprised of a neural network with a specific architecture.
---
中文摘要:
金融风险和收益预测的人工智能体由一个由互连的递归神经网络组成的模块化认知系统构建,以便智能体学习预测金融收益,并学习预测这些预测收益的平方偏差。这两个预期用于构建金融收益的波动敏感区间预测,该预测基于三个主要金融指数进行评估,并证明能够预测金融收益,在培训和测试中的区间预测成功率高于80%,从而对有效市场假设提出质疑。作为一类人工智能系统的一个示例,引入了agent,该系统配备了模块化网络学习认知系统,定义为机器学习模块的集成网络系统,其中,每个模块构成一个功能单元,该功能单元针对一个给定的特定任务进行培训,该任务解决一个复杂主问题的子问题,该问题表示为一个链接子问题网络。在神经网络的情况下,这些系统作为“人工大脑”的一种形式发挥作用,其中每个模块就像一个专门的大脑区域,由具有特定架构的
神经网络组成。
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Machine Learning
机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Computer Science 计算机科学
二级分类:Computational Engineering, Finance, and Science 计算工程、金融和科学
分类描述:Covers applications of computer science to the mathematical modeling of complex systems in the fields of science, engineering, and finance. Papers here are interdisciplinary and applications-oriented, focusing on techniques and tools that enable challenging computational simulations to be performed, for which the use of supercomputers or distributed computing platforms is often required. Includes material in ACM Subject Classes J.2, J.3, and J.4 (economics).
涵盖了计算机科学在科学、工程和金融领域复杂系统的数学建模中的应用。这里的论文是跨学科和面向应用的,集中在技术和工具,使挑战性的计算模拟能够执行,其中往往需要使用超级计算机或分布式计算平台。包括ACM学科课程J.2、J.3和J.4(经济学)中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Neural and Evolutionary Computing 神经与进化计算
分类描述:Covers neural networks, connectionism, genetic algorithms, artificial life, adaptive behavior. Roughly includes some material in ACM Subject Class C.1.3, I.2.6, I.5.
涵盖神经网络,连接主义,遗传算法,人工生命,自适应行为。大致包括ACM学科类C.1.3、I.2.6、I.5中的一些材料。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Statistics 统计学
二级分类:Machine Learning 机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
PDF下载:
-->