英文标题:
《Nonlocal Diffusions and The Quantum Black-Scholes Equation: Modelling
the Market Fear Factor》
---
作者:
Will Hicks
---
最新提交年份:
2018
---
英文摘要:
In this paper, we establish a link between quantum stochastic processes, and nonlocal diffusions. We demonstrate how the non-commutative Black-Scholes equation of Accardi & Boukas (Luigi Accardi, Andreas Boukas, \'The Quantum Black-Scholes Equation\', Jun 2007, available at arXiv:0706.1300v1) can be written in integral form. This enables the application of the Monte-Carlo methods adapted to McKean stochastic differential equations (H. P. McKean, \'A class of Markov processes associated with nonlinear parabolic equations\', Proc. Natl. Acad. Sci. U.S.A., 56(6):1907-1911, 1966) for the simulation of solutions. We show how unitary transformations can be applied to classical Black-Scholes systems to introduce novel quantum effects. These have a simple economic interpretation as a market `fear factor\', whereby recent market turbulence causes an increase in volatility going forward, that is not linked to either the local volatility function or an additional stochastic variable. Lastly, we extend this system to 2 variables, and consider Quantum models for bid-offer spread dynamics.
---
中文摘要:
在本文中,我们建立了量子随机过程与非局域扩散之间的联系。我们演示了如何将Accardi&Boukas的非交换Black-Scholes方程(Luigi Accardi,Andreas Boukas,“量子Black-Scholes方程”,2007年6月,arXiv:0706.1300v1上提供)写成积分形式。这使得适用于McKean随机微分方程(H.P.McKean,“一类与非线性抛物方程相关的马尔可夫过程”,美国自然科学院学报,56(6):1907-19111966)的蒙特卡罗方法能够应用于解的模拟。我们展示了如何将幺正变换应用于经典Black-Scholes系统以引入新的量子效应。这些因素有一个简单的经济学解释,即市场“恐惧因素”,即最近的市场动荡导致未来波动性增加,这与局部波动性函数或其他随机变量无关。最后,我们将该系统推广到2个变量,并考虑了买卖价差动力学的量子模型。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->