英文标题:
《Mining Illegal Insider Trading of Stocks: A Proactive Approach》
---
作者:
Sheikh Rabiul Islam, Sheikh Khaled Ghafoor, William Eberle
---
最新提交年份:
2018
---
英文摘要:
Illegal insider trading of stocks is based on releasing non-public information (e.g., new product launch, quarterly financial report, acquisition or merger plan) before the information is made public. Detecting illegal insider trading is difficult due to the complex, nonlinear, and non-stationary nature of the stock market. In this work, we present an approach that detects and predicts illegal insider trading proactively from large heterogeneous sources of structured and unstructured data using a deep-learning based approach combined with discrete signal processing on the time series data. In addition, we use a tree-based approach that visualizes events and actions to aid analysts in their understanding of large amounts of unstructured data. Using existing data, we have discovered that our approach has a good success rate in detecting illegal insider trading patterns.
---
中文摘要:
股票非法内幕交易的基础是在信息公开之前发布非公开信息(如新产品发布、季度财务报告、收购或合并计划)。由于股票市场的复杂性、非线性和非平稳性,很难发现非法内幕交易。在这项工作中,我们提出了一种方法,使用基于
深度学习的方法结合时间序列数据的离散信号处理,从大量异构的结构化和非结构化数据源中主动检测和预测非法内幕交易。此外,我们使用基于树的方法来可视化事件和操作,以帮助分析人员理解大量非结构化数据。利用现有数据,我们发现我们的方法在检测非法内幕交易模式方面有很好的成功率。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Computer Science 计算机科学
二级分类:Machine Learning
机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Statistics 统计学
二级分类:Machine Learning 机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
PDF下载:
-->