英文标题:
《Geometrically Convergent Simulation of the Extrema of L\\\'{e}vy Processes》
---
作者:
Jorge Ignacio Gonz\\\'alez C\\\'azares, Aleksandar Mijatovi\\\'c, Ger\\\'onimo
Uribe Bravo
---
最新提交年份:
2021
---
英文摘要:
We develop a novel approximate simulation algorithm for the joint law of the position, the running supremum and the time of the supremum of a general L\\\'evy process at an arbitrary finite time. We identify the law of the error in simple terms. We prove that the error decays geometrically in $L^p$ (for any $p\\geq 1$) as a function of the computational cost, in contrast with the polynomial decay for the approximations available in the literature. We establish a central limit theorem and construct non-asymptotic and asymptotic confidence intervals for the corresponding Monte Carlo estimator. We prove that the multilevel Monte Carlo estimator has optimal computational complexity (i.e. of order $\\epsilon^{-2}$ if the mean squared error is at most $\\epsilon^2$) for locally Lipschitz and barrier-type functionals of the triplet and develop an unbiased version of the estimator. We illustrate the performance of the algorithm with numerical examples.
---
中文摘要:
我们开发了一种新的近似模拟算法,用于在任意有限时间内求解一般L趵evy过程的位置、运行上确界和上确界时间的联合规律。我们用简单的术语来确定误差定律。我们证明,与文献中可用近似的多项式衰减相比,误差在几何上以$L^p$(对于任何$p\\geq 1$)作为计算成本的函数衰减。我们建立了一个中心极限定理,并为相应的蒙特卡罗估计量构造了非渐近和渐近置信区间。我们证明了对于三元组的局部Lipschitz和势垒型泛函,多层蒙特卡罗估计具有最佳的计算复杂度(即,如果均方误差最大为$\\ε^{-2}$),并开发了该估计的无偏版本。我们用数值例子说明了算法的性能。
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
---
PDF下载:
-->