英文标题:
《Stability of martingale optimal transport and weak optimal transport》
---
作者:
Julio Backhoff-Veraguas, Gudmund Pammer
---
最新提交年份:
2020
---
英文摘要:
Under mild regularity assumptions, the transport problem is stable in the following sense: if a sequence of optimal transport plans $\\pi_1, \\pi_2, \\ldots$ converges weakly to a transport plan $\\pi$, then $\\pi$ is also optimal (between its marginals). Alfonsi, Corbetta and Jourdain asked whether the same property is true for the martingale transport problem. This question seems particularly pressing since martingale transport is motivated by robust finance where data is naturally noisy. On a technical level, stability in the martingale case appears more intricate than for classical transport since optimal transport plans $\\pi$ are not characterized by a `monotonicity\'-property of their support. In this paper we give a positive answer and establish stability of the martingale transport problem. As a particular case, this recovers the stability of the left curtain coupling established by Juillet. An important auxiliary tool is an unconventional topology which takes the temporal structure of martingales into account. Our techniques also apply to the the weak transport problem introduced by Gozlan, Roberto, Samson and Tetali.
---
中文摘要:
在轻度正则性假设下,运输问题在以下意义上是稳定的:如果一系列最优运输计划$\\pi\\u 1、\\pi\\u 2、\\ldots$弱收敛于运输计划$\\pi$,则$\\pi$也是最优的(在其边缘之间)。Alfonsi、Corbetta和Jourdain询问鞅输运问题是否也存在相同的性质。这个问题似乎特别紧迫,因为鞅运输是由稳健的金融推动的,而金融中的数据自然是嘈杂的。在技术层面上,鞅情形下的稳定性似乎比经典运输情形下的稳定性更复杂,因为最优运输计划$\\pi$的特征不是其支持的“单调性”。本文给出了一个肯定的答案,并建立了鞅输运问题的稳定性。作为一种特殊情况,这恢复了Juillet建立的左侧窗帘耦合的稳定性。一个重要的辅助工具是考虑鞅的时间结构的非常规拓扑。我们的技术也适用于Gozlan、Roberto、Samson和Tetali提出的弱传输问题。
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->