英文标题:
《Model-Free Reinforcement Learning for Financial Portfolios: A Brief
Survey》
---
作者:
Yoshiharu Sato
---
最新提交年份:
2019
---
英文摘要:
Financial portfolio management is one of the problems that are most frequently encountered in the investment industry. Nevertheless, it is not widely recognized that both Kelly Criterion and Risk Parity collapse into Mean Variance under some conditions, which implies that a universal solution to the portfolio optimization problem could potentially exist. In fact, the process of sequential computation of optimal component weights that maximize the portfolio\'s expected return subject to a certain risk budget can be reformulated as a discrete-time Markov Decision Process (MDP) and hence as a stochastic optimal control, where the system being controlled is a portfolio consisting of multiple investment components, and the control is its component weights. Consequently, the problem could be solved using model-free Reinforcement Learning (RL) without knowing specific component dynamics. By examining existing methods of both value-based and policy-based model-free RL for the portfolio optimization problem, we identify some of the key unresolved questions and difficulties facing today\'s portfolio managers of applying model-free RL to their investment portfolios.
---
中文摘要:
金融投资组合管理是投资行业最常见的问题之一。然而,在某些条件下,Kelly准则和风险平价都会崩溃为均值方差,这意味着可能存在投资组合优化问题的通用解决方案,这一点尚未得到广泛认可。事实上,在一定的风险预算下,使投资组合的预期收益最大化的最优成分权重的顺序计算过程可以被重新表述为离散时间马尔可夫决策过程(MDP),因此可以被表述为随机最优控制,其中被控制的系统是由多个投资成分组成的投资组合,控件是其组件权重。因此,可以使用无模型强化学习(RL)解决该问题,而无需了解特定的组件动力学。通过检查投资组合优化问题中基于价值和基于政策的无模型RL的现有方法,我们确定了当今投资组合经理在将无模型RL应用于其投资组合时所面临的一些尚未解决的关键问题和困难。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Machine Learning
机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Statistics 统计学
二级分类:Machine Learning 机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
PDF下载:
-->