英文标题:
《Regulating AI: do we need new tools?》
---
作者:
Otello Ardovino, Jacopo Arpetti, Marco Delmastro
---
最新提交年份:
2019
---
英文摘要:
The Artificial Intelligence paradigm (hereinafter referred to as \"AI\") builds on the analysis of data able, among other things, to snap pictures of the individuals\' behaviors and preferences. Such data represent the most valuable currency in the digital ecosystem, where their value derives from their being a fundamental asset in order to train machines with a view to developing AI applications. In this environment, online providers attract users by offering them services for free and getting in exchange data generated right through the usage of such services. This swap, characterized by an implicit nature, constitutes the focus of the present paper, in the light of the disequilibria, as well as market failures, that it may bring about. We use mobile apps and the related permission system as an ideal environment to explore, via econometric tools, those issues. The results, stemming from a dataset of over one million observations, show that both buyers and sellers are aware that access to digital services implicitly implies an exchange of data, although this does not have a considerable impact neither on the level of downloads (demand), nor on the level of the prices (supply). In other words, the implicit nature of this exchange does not allow market indicators to work efficiently. We conclude that current policies (e.g. transparency rules) may be inherently biased and we put forward suggestions for a new approach.
---
中文摘要:
人工智能范式(以下简称“AI”)建立在
数据分析的基础上,能够捕捉个人行为和偏好的图片。这些数据是数字生态系统中最有价值的货币,它们的价值来自于它们是一种基本资产,用于训练机器以开发AI应用程序。在这种环境下,在线提供商通过向用户免费提供服务和通过使用此类服务获取交换数据来吸引用户。鉴于这种互换可能带来的不平衡以及市场失灵,这种互换具有隐含的性质,构成了本文件的重点。我们使用移动应用程序和相关许可系统作为理想的环境,通过计量经济学工具来探索这些问题。结果来自一个100多万次观察的数据集,表明买方和卖方都知道,获得数字服务隐含着数据交换,尽管这对下载水平(需求)和价格水平(供应)都没有很大影响。换言之,这种交易的隐含性质不允许市场指标有效运作。我们得出结论,当前的政策(如透明度规则)可能存在固有的偏见,我们提出了新方法的建议。
---
分类信息:
一级分类:Economics 经济学
二级分类:General Economics 一般经济学
分类描述:General methodological, applied, and empirical contributions to economics.
对经济学的一般方法、应用和经验贡献。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Economics 经济学
分类描述:q-fin.EC is an alias for econ.GN. Economics, including micro and macro economics, international economics, theory of the firm, labor economics, and other economic topics outside finance
q-fin.ec是econ.gn的别名。经济学,包括微观和宏观经济学、国际经济学、企业理论、劳动经济学和其他金融以外的经济专题
--
---
PDF下载:
-->