全部版块 我的主页
论坛 提问 悬赏 求职 新闻 读书 功能一区 悬赏大厅 文献求助专区
1085 4
2011-06-06
【题 名】:Diagnosis of Subtraction Bugs Using Bayesian Networks
【作 者】:Jihyuu Lee,James E.Corter

【期刊、会议、单位名称】:Applied Psychological Measurement
【年, 卷(期), 起止页码】:January 2011 vol. 35 no. 1 27-47
【全文链接】:
http://apm.sagepub.com/content/35/1/27.abstract?rss=1&patientinform-links=yes&legid=spapm;35/1/27
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2011-6-6 11:57:24
呵呵,我帮你一下吧,以后有文献求助问题常来本版:)
附件列表
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-6-6 12:00:19
haitun224 发表于 2011-6-6 11:45
文献名:Diagnosis of Subtraction Bugs Using Bayesian Networks
期刊名:Applied Psychological Measurement
January 2011
vol. 35
no. 1
27-47

作者名:
  • Jihyun Lee
    • Columbia University, New York, New York, USA




链接:http://apm.sagepub.com/content/35/1/27.abstract?rss=1&patientinform-links=yes&legid=spapm;35/1/27

                  Abstract                                    Diagnosis of misconceptions or ‘‘bugs’’ in procedural skills is difficult because of their unstable nature. This study addresses                     this problem by proposing and evaluating a probability-based approach to the diagnosis of bugs in children’s multicolumn subtraction                     performance using Bayesian networks. This approach assumes a causal network relating hypothesized subtraction bugs to the                     observed test items. Two research questions are tested within this framework. First, it is investigated whether more reliable                     assessment of latent subtraction bugs can be achieved by hypothesizing and using subskill nodes in the Bayesian network as                     causal factors affecting bugs. Second, network performance is evaluated using two types of testing situations, one using binary                     data (items scored as correct or incorrect) and the other simulating a multiple-choice test format with diagnostic use of                     specific wrong answers. The resulting four types of Bayesian networks are evaluated for their effectiveness in bug diagnosis.                     All four networks show good performance, with even the simplest network (bug nodes only, binary data) giving overall bug diagnosis                     rates of at least 85%. Prediction is best with the most complex network (bug and subskill nodes, diagnostic use of specific                     wrong answers), for which the correct diagnosis rate reaches 99%. These results suggest that stable and reliable bug diagnosis                     can be achieved using a Bayesian network framework, but that the stability and effectiveness of diagnosis is increased when                     the network includes latent subskills in addition to bugs as causal factors, and when specific wrong answers are used for                     diagnostic purposes.
附件列表

diagnosis.PDF

大小:250.7 KB

 马上下载

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-6-6 12:00:51
dreamtree 发表于 2011-6-6 11:57
呵呵,我帮你一下吧,以后有文献求助问题常来本版:)
佩服佩服
嘿嘿
还是你的速度快
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-6-6 12:05:02
速度真快啊!第一次找文献就这么顺利,以后一定常来,非常感谢!!!!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群