英文标题:
《Machine Learning on EPEX Order Books: Insights and Forecasts》
---
作者:
Simon Schn\\\"urch and Andreas Wagner
---
最新提交年份:
2019
---
英文摘要:
This paper employs machine learning algorithms to forecast German electricity spot market prices. The forecasts utilize in particular bid and ask order book data from the spot market but also fundamental market data like renewable infeed and expected demand. Appropriate feature extraction for the order book data is developed. Using cross-validation to optimise hyperparameters, neural networks and random forests are proposed and compared to statistical reference models. The machine learning models outperform traditional approaches.
---
中文摘要:
本文采用机器学习算法对德国电力现货市场价格进行预测。预测特别利用现货市场的买卖订单数据,以及可再生能源进料和预期需求等基本市场数据。对订单数据进行适当的特征提取。利用交叉验证优化超参数,提出了神经网络和随机森林,并与统计参考模型进行了比较。
机器学习模型优于传统方法。
---
分类信息:
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Statistics 统计学
二级分类:Machine Learning 机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
PDF下载:
-->