摘要翻译:
近年来,为工业应用如闭环控制过程设计鲁棒的无线通信系统已成为研究的热点。此外,连接移动领域的不断发展对系统的可靠性和可用性提出了类似甚至更高的要求。除了不能满足可靠性要求之外,如果系统受到违反信息安全目标(如数据真实性或完整性)的攻击,系统的可用性可能会进一步降低。为了保证应用程序的安全运行,系统至少要能够检测到这些攻击。尽管有许多传统密码学意义上的技术来实现这一目标,但由于资源效率低下,这些技术并不总是适合所述应用的要求。在本工作中,我们展示了如何实现基于物理层安全的消息真实性目标(PHYSEC)。这些技术的主要思想是利用无线信道的用户特性,特别是在空间域。此外,我们还展示了基于
机器学习的方法的性能,并与现有的其他方法进行了比较。
---
英文标题:
《Application of Machine Learning for Channel based Message Authentication
in Mission Critical Machine Type Communication》
---
作者:
Andreas Weinand, Michael Karrenbauer, Raja Sattiraju, Hans D. Schotten
---
最新提交年份:
2017
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Networking and Internet Architecture 网络和因特网体系结构
分类描述:Covers all aspects of computer communication networks, including network architecture and design, network protocols, and internetwork standards (like TCP/IP). Also includes topics, such as web caching, that are directly relevant to Internet architecture and performance. Roughly includes all of ACM Subject Class C.2 except C.2.4, which is more likely to have Distributed, Parallel, and Cluster Computing as the primary subject area.
涵盖计算机通信网络的所有方面,包括网络体系结构和设计、网络协议和网络间标准(如TCP/IP)。还包括与Internet体系结构和性能直接相关的主题,如web缓存。大致包括除C.2.4以外的所有ACM主题类C.2,后者更有可能将分布式、并行和集群计算作为主要主题领域。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
The design of robust wireless communication systems for industrial applications such as closed loop control processes has been considered manifold recently. Additionally, the ongoing advances in the area of connected mobility have similar or even higher requirements regarding system reliability and availability. Beside unfulfilled reliability requirements, the availability of a system can further be reduced, if it is under attack in the sense of violation of information security goals such as data authenticity or integrity. In order to guarantee the safe operation of an application, a system has at least to be able to detect these attacks. Though there are numerous techniques in the sense of conventional cryptography in order to achieve that goal, these are not always suited for the requirements of the applications mentioned due to resource inefficiency. In the present work, we show how the goal of message authenticity based on physical layer security (PHYSEC) can be achieved. The main idea for such techniques is to exploit user specific characteristics of the wireless channel, especially in spatial domain. Additionally, we show the performance of our machine learning based approach and compare it with other existing approaches.
---
PDF链接:
https://arxiv.org/pdf/1711.05088