全部版块 我的主页
论坛 经济学人 二区 外文文献专区
284 22
2022-06-27
英文标题:
《Regularizing Portfolio Risk Analysis: A Bayesian Approach》
---
作者:
Sourish Das, Aritra Halder and Dipak K. Dey
---
最新提交年份:
2015
---
英文摘要:
  It is important for a portfolio manager to estimate and analyze recent portfolio volatility to keep the portfolio\'s risk within limit. Though the number of financial instruments in the portfolio can be very large, sometimes more than thousands, daily returns considered for analysis are only for a month or even less. In this case rank of portfolio covariance matrix is less than full, hence solution is not unique. It is typically known as the ``ill-posed\" problem. In this paper we discuss a Bayesian approach to regularize the problem. One of the additional advantages of this approach is to analyze the source of risk by estimating the probability of positive `conditional contribution to total risk\' (CCTR). Each source\'s CCTR would sum up to the portfolio\'s total volatility risk. Existing methods only estimate CCTR of a source, and does not estimate the probability of CCTR to be significantly greater (or less) than zero. This paper presents Bayesian methodology to do so. We use a parallelizable and easy to use Monte Carlo (MC) approach to achieve our objective. Estimation of various risk measures, such as Value at Risk and Expected Shortfall, becomes a by-product of this Monte-Carlo approach.
---
中文摘要:
投资组合经理评估和分析最近的投资组合波动率,以将投资组合的风险控制在有限的范围内,这一点很重要。虽然投资组合中的金融工具数量可能非常多,有时超过数千种,但考虑用于分析的每日回报率仅为一个月甚至更少。在这种情况下,投资组合协方差矩阵的秩小于全秩,因此解不是唯一的。这通常被称为“不适定”问题。在本文中,我们讨论了一种规范化问题的贝叶斯方法。这种方法的另一个优点是通过估计“对总风险的条件贡献”(CCTR)的概率来分析风险源. 每个来源的CCTR总计为投资组合的总波动风险。现有方法仅估计源的CCTR,未估计CCTR显著大于(或小于)零的概率。本文介绍了贝叶斯方法。我们使用一种可并行化且易于使用的蒙特卡罗(MC)方法来实现我们的目标。各种风险度量的估计,如风险价值和预期缺口,成为这种蒙特卡罗方法的副产品。
---
分类信息:

一级分类:Quantitative Finance        数量金融学
二级分类:Statistical Finance        统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--

---
PDF下载:
-->
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2022-6-27 12:43:00
规范化投资组合风险分析:贝叶斯方法Sourish Dasa、Aritra Haldera和Dipak K.DeybaDepartment of Mathematics,Chennai Mathematics Institute,IndiabDepartment of Statistics,University of Connecticut,USA Abstracts投资组合经理评估和分析最近的投资组合波动性以将投资组合的风险控制在一定范围内非常重要。虽然投资组合中的金融工具数量可能很大,有时超过数千种,但用于分析的每日回报率仅为一个月,甚至更少。在这种情况下,组合协方差矩阵的秩小于全秩,因此解不是唯一的。这通常被称为“不适定”问题。在这篇文章中,我们讨论了一种贝叶斯方法来正则化这个问题。这种方法的另一个优点是通过估计“对总风险的条件贡献”(CCTR)为正的概率来分析风险的来源。每个来源的CCTR将总计为投资组合的总波动风险。现有方法仅估计一个来源的CCTR,未估计CCTR显著大于(或小于)零的概率。本文介绍了贝叶斯方法。我们使用一种可并行化且易于使用的蒙特卡罗(MC)方法来实现我们的目标。对各种风险度量的估计,如风险价值和预期短缺,成为这种蒙特卡罗方法的副产品。关键词:蒙特卡罗、并行计算、风险分析、收缩法、波动性1简介最近的欧元区危机提醒我们,“风险分析”始终是投资组合管理理论的重要组成部分。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2022-6-27 12:43:04
Markowitz(1952)[5],首次提出波动率(或标准差)作为风险度量。因为波动率提供了投资组合平均损失(或收益)的概念;对于极端损失,“风险价值”(VaR)和“预期短期下跌”(ESF)等新的风险度量也很受欢迎。尽管巴塞尔II监管框架要求纳入VaR和ESF,但迄今为止的波动性在融资中发挥着重要作用。例如,波动性可以通过VIX指数交易所交易基金在公开市场上直接交易,也可以通过衍生品间接交易。衡量波动性并确定波动性的主要来源至关重要。通常,投资良好的rsi型共同基金或养老基金的金融工具数量超过数千种。这些基金定期在外国投资;有时在五六十个不同的国家。然而,投资组合经理担心长期s级数据的平稳性,只对最近的波动性感兴趣,因为最近的波动性会影响一个月的日收益率,有时甚至更少。由于投资组合的部门、国家或组成部分的数量大于回报天数,投资组合协方差矩阵的秩小于全秩;这种情况会产生非唯一的解决方案。一般称为“不适定”问题。在本文中,我们主要关注在“不适定”条件下对投资组合波动的来源进行估计和分析。我们解决了均值-方差优化问题,该问题为给定投资组合的最优权重提供了解析解。此优化过程需要估计投资组合协方差矩阵。但由于问题的“不适定”结构,正则样本协方差在这里不起作用。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2022-6-27 12:43:07
因此,我们为投资组合协方差矩阵提出了一种正则化插件贝叶斯估计,并使用给定投资组合的优化权重。使用此设置,我们使用蒙特卡罗算法评估其样本外性能。Ledoit和Wolf(2003,2004a,200 4b)[4,3,2]在一篇三系列的论文中展示了在保持优化过程的所有其他步骤不变的情况下,对实际股市数据使用收缩估计。通过这样做,他们减少了与特定索引相关的跟踪错误。因此,它大大提高了主动投资组合管理的实现信息率。Ledoit和Wolf(2004a)提出了一种无分布的方法来正则化协方差矩阵,但在本文中,出于明显的原因,我们在协方差矩阵上引入了概率结构。本文提出的正则化插件贝叶斯估计与Ledoit和Wolf(2004a)[3]提出的协方差矩阵的经验贝叶斯估计有直接关系。此外,Golsnoy和Okhrin(2007)[1]表明,通过使用多元收缩估计器r作为最优投资组合权重,投资组合选择得到了改善。最近,Das和Dey(2010)[6]介绍了协方差矩阵的多元gamma分布的一些贝叶斯性质。在本文中,我们使用这种贝叶斯方法来正则化估计问题。在一定条件下,投资组合协方差矩阵的后验分布是适当的,并且具有闭合形式的倒多变量伽玛分布。因此,协方差矩阵的解是唯一的。这篇文章的主题如下。在第二节中,我们讨论了投资组合协方差矩阵的后验分布及其适当的条件。在第3节中,我们提出了一种可并行化的蒙特卡罗算法来获得风险的后验推断。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2022-6-27 12:43:10
在第4节中,我们用两个经验数据集演示了该方法。推理方法最初应用于一个由不同资产类别组成的小数据集。接下来,我们考虑由“印度国家证券交易所”(NSEI)的股票组成的投资组合。第5节总结了本文。2投资组合协方差矩阵的后验分布suppose,S是一个具有p(p+1)变量sij的p阶实对称样本投资组合协方差矩阵。∑=((σij))是相应的总体投资组合协方差矩阵,因此对于具有对角元素1和-1,(D∑D)-1具有非正对角元素。因此,由于Bapat的条件,Bapat(1989)[7],S的特征函数为ψS(T)=E[i exptr(T S)] = |Ip- iβ∑T|-α、 具有密度函数f(S)=∑αp(α)βαpexpn-βtrΣ-1秒o | S |α-(p+1),S>0具有参数α的不可整除多阶段伽马分布≥p-1, β ≥ 0第∑个正定义矩阵。没有te,如果0≤ α ≤p-1,S具有退化分布。如果我们选择α=n-1和β=2则S fo允许Wishart分布,即S~ W(n-(∑)(见Anderson,(1984)[8],第252页)。如果p≥ n、 然后,S小于满秩,S的抽样分布退化,因此无法对此类情况进行有效的统计推断。Das和Dey(2010)[6]表明,if∑优先于倒转的多元gamma分布,即if∑~ MG公司-1p(a,β,ψ)∑的后验分布为∑S~ MG公司-1p(α+α,β,S+ψ)。注意,只要(α+a)≥p-1、后验分布合理。假设n≤ p、 即α≤p-1,其中α=n-1.然后S的抽样分布退化。然而,如果我们选择自由度参数a的先验阶数,则α+a≥(p- 1)这是一个≥p-∑的后验分布是适当的。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2022-6-27 12:43:14
因此,我们将能够进行BayesianReference。如果我们选择a=与β=2,则先验o f∑是逆Wishart分布∑~ W-1(n,ψ)(1),∑is∑S的后验分布~ W-1(n+n- 1,ψ+S)(2)详见Anderson(1984)[8]。Ledoit和Wolf(2003、2004a、2004 b)的3系列论文确定了样本协方差矩阵未能对por tfolio协方差结构提供良好估计的原因,并表明了即使问题不是“病态d”也需要正则化。然而,在其结构框架上实施推理程序的范围不足,如条件贡献对总风险的数量。这背后的主要原因是为预期收益分配分配合适的模型的问题。本文给出了协方差矩阵S的一个假设~ W、 对预期收益具有正态/正态成分混合分布的基本假设。假设的正确性~ 如Gelman等人【15】所述,W由贝叶斯公式提供。预期收益的边际概率分布为t。这将为预测收益建模提供一种优于使用正态分布的方法。如果n<p,则我们选择先验自由度asn=(p- n) +c.(3)表示c>0。这确保了后验分布的正确性。∑isM的后验r模(∑S)=ψ+Sn+n+p=n+p+1n+n+p。ψn+p+1+n- 1n+n+p.序号- 1=qψn+p+1+(1- q) 序号- 1,(4)其中q=n+p+1n+n+p。∑的后验模式显然是收缩估计量,它是先验分布模式和样本协方差估计量的加权平均值。Das和Dey(2010)[6]表明,在Kullback-L eibler型损失函数下,后验模型也是一个B-ayes估计量。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群