N为179个地级市,TIME为871天。
STATA命令如下:
xtset citycode time
tabulate time, gen(time_dumm) //生成时间固定效应虚拟变量
tabulate citycode, gen(citycode_dumm) //生成个体固定效应虚拟变量
global Xs "x1 x2 x3 x4 x5"
命令1:xtreg y post $Xs time_dumm*, fe robust
Fixed-effects (within) regression Number of obs = 155,907
Group variable: citycode Number of groups = 179
R-sq: Obs per group:
within = 0.5768 min = 869
between = 0.0603 avg = 871.0
overall = 0.5290 max = 871
F(178,178) = .
corr(u_i, Xb) = -0.0494 Prob > F = .
(Std. Err. adjusted for 179 clusters in citycode)
Robust
y Coef. Std. Err. t P>t [95% Conf. Interval]
post -.5417144 .6856645 -0.79 0.431 -1.894792 .8113628
x1 1.536516 .1579086 9.73 0.000 1.224902 1.84813
x2 4.10414 .3349533 12.25 0.000 3.44315 4.765131
x3 1.1555 .0794282 14.55 0.000 .9987576 1.312242
x4 -.118736 .0212154 -5.60 0.000 -.1606021 -.0768698
x5 -.2517194 .0316622 -7.95 0.000 -.314201 -.1892379
time_dumm1 8.470395 5.210029 1.63 0.106 -1.810977 18.75177
time_dumm2 10.16826 5.248989 1.94 0.054 -.1899973 20.52651
-----------------------------------------------------------------------------------------
命令2:reghdfe y post $Xs, a(i.citycode i.time) vce(r)
HDFE Linear regression Number of obs = 155,907
Absorbing 2 HDFE groups F( 6, 154852) = 5607.45
Prob > F = 0.0000
R-squared = 0.6117
Adj R-squared = 0.6090
Within R-sq. = 0.2034
Root MSE = 18.5461
Robust
y Coef. Std. Err. t P>t [95% Conf. Interval]
post -.5417144 .1704096 -3.18 0.001 -.8757137 -.2077152
x1 1.536516 .0174372 88.12 0.000 1.50234 1.570693
x2 4.10414 .0825585 49.71 0.000 3.942327 4.265953
x3 1.1555 .021558 53.60 0.000 1.113247 1.197753
x4 -.118736 .0080693 -14.71 0.000 -.1345516 -.1029203
x5 -.2517194 .0055379 -45.45 0.000 -.2625735 -.2408653
_cons 39.97914 .5821983 68.67 0.000 38.83804 41.12024
Absorbed degrees of freedom:
Absorbed FE Categories - Redundant = Num. Coefs
-
citycode 179 0 179
time 871 1 870
---------------------------------------------------------------------
命令3:reg y post $Xs i.citycode i.time,robust
Linear regression Number of obs = 155,907
F(1054, 154852) = 257.19
Prob > F = 0.0000
R-squared = 0.6117
Root MSE = 18.546
Robust
y Coef. Std. Err. t P>t [95% Conf. Interval]
post -.5417144 .1704096 -3.18 0.001 -.8757137 -.2077152
x1 1.536516 .0174372 88.12 0.000 1.50234 1.570693
x2 4.10414 .0825585 49.71 0.000 3.942327 4.265953
x3 1.1555 .021558 53.60 0.000 1.113247 1.197753
x4 -.118736 .0080693 -14.71 0.000 -.1345516 -.1029203
x5 -.2517194 .0055379 -45.45 0.000 -.2625735 -.2408653
---------------------------------------------------------------------------------------
多期双重差分,使用第一个命令post不显著,使用第二第三个命令post显著,但三个命令的回归系数均一致,请问这三个命令有何差异,选择哪一个命令合适?
谢谢各位老师解答。