铁们,做的是2009-2018年的时间和行业固定效应,为什么2018年的数据被omitted<br><br>
Panel variable: id (unbalanced)<br>
Time variable: year, 2009 to 2018, but with gaps<br>
Delta: 1 unit
. reg Inveffi RateV $controls i.year i.Ind<br>
note: 2018.year omitted because of collinearity.
Source | SS df MS Number of obs = 18,459<br>
-------------+---------------------------------- F(90, 18368) = 9.69<br>
Model | 2.70447987 90 .030049776 Prob &gt; F = 0.0000<br>
Residual | 56.9906226 18,368 .003102712 R-squared = 0.0453<br>
-------------+---------------------------------- Adj R-squared = 0.0406<br>
Total | 59.6951025 18,458 .003234105 Root MSE = .0557
------------------------------------------------------------------------------<br>
Inveffi | Coefficient Std. err. t P&gt;|t| [95% conf. interval]<br>
-------------+----------------------------------------------------------------<br>
RateV | -.1769519 .03087 -5.73 0.000 -.23746 -.1164439<br>
Age | -.00046 .000087 -5.28 0.000 -.0006306 -.0002894<br>
Size | -.0010301 .0003906 -2.64 0.008 -.0017958 -.0002645<br>
ROA | .0160552 .0031219 5.14 0.000 .009936 .0221744<br>
TBQ | -.000227 .0001596 -1.42 0.155 -.0005399 .000086<br>
DAR | -.0006601 .0013712 -0.48 0.630 -.0033477 .0020275<br>
ATO | -.0081886 .0008245 -9.93 0.000 -.0098046 -.0065725<br>
|<br>
year |<br>
2010 | .0017342 .0021713 0.80 0.424 -.0025217 .0059901<br>
2011 | .0026826 .0020658 1.30 0.194 -.0013666 .0067318<br>
2012 | -.0050802 .0021067 -2.41 0.016 -.0092096 -.0009509<br>
2013 | -.0096801 .0020038 -4.83 0.000 -.0136076 -.0057525<br>
2014 | -.006099 .0020441 -2.98 0.003 -.0101056 -.0020924<br>
2015 | .003336 .0017843 1.87 0.062 -.0001614 .0068334<br>
2016 | .0047472 .0017286 2.75 0.006 .0013591 .0081354<br>
2017 | -.002148 .0017319 -1.24 0.215 -.0055427 .0012467<br>
2018 | 0 (omitted)