经管之家App
让优质教育人人可得
立即打开
全部版块
我的主页
›
论坛
›
计量经济学与统计论坛 五区
›
计量经济学与统计软件
›
Gauss专版
Handbook of Computational Statistics
楼主
xuehe
6291
11
收藏
2011-06-22
Contents
List of Contributors
I. Computational Statistics
1. Computational Statistics: An Introduction
1.1 Computational Statistics and Data Analysis
1.2 The Emergence of a Field of Computational Statistics
1.3 Why This Handbook
References
II. Statistical Computing
1. Basic Computational Algorithms
1.1 Computer Arithmetic
1.2 Algorithms
References
2. Random Number Generation
2.1 Introduction
2.2 Uniform Random Number Generators
2.3 Linear Recurrences Modulo
2.4 Generators Based on Recurrences Modulo
2.5 Nonlinear RNGs
2.6 Examples of Statistical Tests
2.7 Available Software and Recommendations
2.8 Non-uniform Random Variate Generation
References
3. Markov Chain
Monte Carlo Technology
3.1 Introduction
3.2 Markov Chains
3.3 Metropolis-Hastings Algorithm
3.4 The Gibbs Sampling Algorithm
3.5 MCMC Sampling with Latent Variables
3.6 Estimation of Density Ordinates
3.7 Sampler Performance and Diagnostics
3.8 Strategies for Improving Mixing
3.9 Concluding Remarks
References
4. Numerical Linear Algebra
4.1 Matrix Decompositions
4.2 Direct Methods for Solving Linear Systems
4.3 Iterative Methods for Solving Linear Systems
4.4 Eigenvalues and Eigenvectors
4.5 Sparse Matrices
References
5. The EM Algorithm
5.1 Introduction
5.2 Basic Theory of the EM Algorithm
5.3 Examples of the EM Algorithm
5.4 Variations on the EM Algorithm
5.5 Miscellaneous Topics on the EM Algorithm
References
6. Stochastic Optimization
6.1 Introduction
6.2 Random Search
6.3 Stochastic Approximation
6.4 Genetic Algorithms
6.5 Concluding Remarks
References
7. Transforms in Statistics
7.1 Introduction
7.2 Fourier and Related Transforms
7.3 Wavelets and Other Multiscale Transforms
7.4 Discrete Wavelet Transforms
7.5 Conclusion
References
8. Parallel Computing Techniques
8.1 Introduction
8.2 Basic Ideas
8.3 Parallel Computing Software
8.4 Parallel Computing in Statistics
References
9. Statistical Databases
9.1 Introduction
9.2 Fundamentals of Data Management
9.3 Architectures, Concepts and Operators
9.4 Access Methods
9.5 Extraction, Transformation and Loading (ETL)
9.6 Metadata and XML
9.7 Privacy and Security
References
10. Interactive and Dynamic Graphics
10.1 Introduction
10.2 Early Developments and Software
10.3 Concepts of Interactive and Dynamic Graphics
10.4 Graphical Software
10.5 Interactive 3D Graphics
10.6 Applications in Geography, Medicine, and Environmental Sciences
10.7 Outlook
References
11. The Grammar of Graphics
11.1 Introduction
11.2 Variables
11.3 Algebra
11.4 Scales
11.5 Statistics
11.6 Geometry
11.7 Coordinates
11.8 Aesthetics
11.9 Layout
11.10 Analytics
11.11 Software
11.12 Conclusion
References
12. Statistical User Interfaces
12.1 Introduction
12.2 The Golden Rules and the ISO Norm 9241
12.3 Development of Statistical User Interfaces
12.4 Outlook
Web References
References
13. Object Oriented Computing
13.1 Introduction
13.2 Objects and Encapsulation
13.3 Short Introduction to the UML
13.4 Inheritance
13.5 Polymorphism
13.6 More about Inheritance
13.7 Structure of the Object Oriented Program
13.8 Conclusion
References
III. Statistical Methodology
1. Model Selection
1.1 Introduction
1.2 Basic Concepts - Trade-Offs
1.3 AIC, BIC, C
and Their Variations
1.4 Cross-Validation and Generalized Cross-Validation
1.5 Bayes Factor
1.6 Impact of Heteroscedasticity and Correlation
1.7 Discussion
References
2. Bootstrap and Resampling
2.1 Introduction
2.2 Bootstrap as a Data Analytical Tool
2.3 Resampling Tests and Confidence Intervals
2.4 Bootstrap for Dependent Data
References
3. Design and Analysis of Monte Carlo Experiments
3.1 Introduction
3.2 Simulation Techniques in Computational Statistics
3.3 Black-Box Metamodels of Simulation Models
3.4 Designs for Linear Regression Models
3.5 Kriging
3.6 Conclusions
References
4. Multivariate Density Estimation and Visualization
4.1 Introduction
4.2 Visualization
4.3 Density Estimation Algorithms and Theory
4.4 Visualization of Trivariate Functionals
4.5 Conclusions
References
5. Smoothing: Local Regression Techniques
5.1 Smoothing
5.2 Linear Smoothing
5.3 Statistical Properties of Linear Smoothers
5.4 Statistics for Linear Smoothers: Bandwidth Selection and Inference
5.5 Multivariate Smoothers
References
6. Dimension Reduction Methods
6.1 Introduction
6.2 Linear Reduction of High-dimensional Data
6.3 Nonlinear Reduction of High-dimensional Data
6.4 Linear Reduction of Explanatory Variables
6.5 Concluding Remarks
References
7. Generalized Linear Models
7.1 Introduction
7.2 Model Characteristics
7.3 Estimation
7.4 Practical Aspects
7.5 Complements and Extensions
References
8. (Non) Linear Regression Modeling
8.1 Linear Regression Modeling
8.2 Nonlinear Regression Modeling
References
9. Robust Statistics
9.1 Robust Statistics; Examples and Introduction
9.2 Location and Scale in
9.3 Location and Scale in
9.4 Linear Regression
9.5 Analysis of Variance
References
10. Semiparametric Models
10.1 Introduction
10.2 Semiparametric Models for Conditional Mean Functions
10.3 The Proportional Hazards Model with Unobserved Heterogeneity
10.4 A Binary Response Model
References
11. Bayesian Computational Methods
11.1 Introduction
11.2 Bayesian Computational Challenges
11.3 Monte Carlo Methods
11.4 Markov Chain Monte Carlo Methods
11.5 More Monte Carlo Methods
11.6 Conclusion
References
12. Computational Methods in Survival Analysis
12.1 Introduction
12.2 Estimation of Shape or Power Parameter
12.3 Regression Models
12.4 Multiple Failures and Counting Processes
References
13. Data and Knowledge Mining
13.1 Data Dredging and Knowledge Discovery
13.2 Knowledge Discovery in Databases
13.3 Supervised and Unsupervised Learning
13.4 Data Mining Tasks
13.5 Data Mining Computational Methods
References
14. Recursive Partitioning and Tree-based Methods
14.1 Introduction
14.2 Basic Classification Trees
14.3 Computational Issues
14.4 Interpretation
14.5 Survival Trees
14.6 Tree-based Methods for Multiple Correlated Outcomes
14.7 Remarks
References
15. Support Vector Machines
15.1 Introduction
15.2 Learning from Examples
15.3 Linear SVM: Learning Theory in Practice
15.4 Non-linear SVM
15.5 Implementation of SVM
15.6 Extensions of SVM
15.7 Applications
15.8 Summary and Outlook
References
16. Bagging, Boosting and Ensemble Methods
16.1 An Introduction to Ensemble Methods
16.2 Bagging and Related Methods
16.3 Boosting
References
IV. Selected Applications
1. Computationally Intensive Value at Risk Calculations
1.1 Introduction
1.2 Stable Distributions
1.3 Hyperbolic Distributions
1.4 Value at Risk, Portfolios and Heavy Tails
References
2. Econometrics
2.1 Introduction
2.2 Limited Dependent Variable Models
2.3 Stochastic Volatility and Duration Models
2.4 Finite Mixture Models
References
3. Statistical and Computational Geometry of Biomolecular Structure
3.1 Introduction
3.2 Statistical Geometry of Molecular Systems
3.3 Tetrahedrality of Delaunay Simplices as a Structural Descriptor in Water
3.4 Spatial and Compositional Three-dimensional Patterns in Proteins
3.5 Protein Structure Comparison and Classification
3.6 Conclusions
References
4. Functional Magnetic Resonance Imaging
4.1 Introduction: Overview and Purpose of fMRI
4.2 Background
4.3 fMRI Data
4.4 Modeling and Analysis
4.5 Computational Issues
4.6 Conclusions
References
5. Network Intrusion Detection
5.1 Introduction
5.2 Basic TCP/IP
5.3 Passive Sensing of Denial of Service Attacks
5.4 Streaming Data
5.5 Visualization
5.6 Profiling and Anomaly Detection
5.7 Discussion
References
Index
扫码加我 拉你入群
请注明:姓名-公司-职位
以便审核进群资格,未注明则拒绝
全部回复
沙发
xuehe
2011-6-22 20:53:10
2. Bootstrap and Resampling [size=+2]
Enno Mammen, Swagata Nandi
Subsections
2.1 Introduction
2.2 Bootstrap as a Data Analytical Tool
2.3 Resampling Tests and Confidence Intervals
2.4 Bootstrap for Dependent Data
2.4.1 The Subsampling
2.4.2 The Block Bootstrap
2.4.3 The Sieve Bootstrap
2.4.4 The Nonparametric Autoregressive Bootstrap
2.4.5 The Regression-type Bootstrap, the Wild Bootstrap and the Local Bootstrap
2.4.6 The Markov Bootstrap
2.4.7 The Frequency Domain Bootstrap
扫码加我 拉你入群
请注明:姓名-公司-职位
以便审核进群资格,未注明则拒绝
藤椅
xuehe
2011-6-22 20:54:05
Electronic Books
Applied Multivariate Statistical Analysis
HTML
W. H鋜dle, L. Simar, ISBN-10: 3540030794
Applied Nonparametric Regression
HTML
W. H鋜dle
Applied Quantitative Finance
HTML
W. H鋜dle, T. Kleinow, G. Stahl, ISBN 9783540434603
Cours d'alg鑒re pour les 閠udiants candidats ?l'閏hange ENSAE-HUB
HTML
S. Raspiller
Cours de math閙atiques pour les 閠udiants candidats ? l'閏hange ENSAE-HUB
HTML
T. d'Henin
Einf黨rung in die Statistik der Finanzm鋜kte
HTML
J. Franke, W. H鋜dle, C. Hafner, ISBN-10: 3540405585
Handbook of Computational Statistics
HTML
J.E. Gentle, W. H鋜dle, Y. Mori, ISBN-10: 3540404643
Multivariate Statistics - Exercises and Solutions
HTML
W. H鋜dle, Z. Hlavka
Nonparametric and Semiparametric Models
HTML
W. H鋜dle, M. M黮ler, S. Sperlich, A. Werwatz, ISBN-10: 3540207228
Statistical Tools for Finance and Insurance
HTML
P. Cizek, W. H鋜dle, R. Weron, ISBN-10: 3540221891
Statistics of Financial Markets
HTML
J. Franke, W. H鋜dle, C. Hafner, ISBN-10: 3540216758
XploRe Applications Guide
HTML
W. H鋜dle, Z. Hlavka, S. Klinke, ISBN-10 9783540675457
XploRe Learning Guide
HTML
W. H鋜dle, S. Klinke, M. M黮ler, ISBN-10: 9783540662075
last change: 2007-01-14
扫码加我 拉你入群
请注明:姓名-公司-职位
以便审核进群资格,未注明则拒绝
板凳
daodaory
2011-6-22 21:03:43
能下载吗?
扫码加我 拉你入群
请注明:姓名-公司-职位
以便审核进群资格,未注明则拒绝
报纸
xuehe
2011-6-23 12:26:43
部分下载
扫码加我 拉你入群
请注明:姓名-公司-职位
以便审核进群资格,未注明则拒绝
地板
xiao苏苏
2014-3-18 16:34:28
谢谢楼主分享~~~~~
扫码加我 拉你入群
请注明:姓名-公司-职位
以便审核进群资格,未注明则拒绝
点击查看更多内容…
7楼
潭生.经济学笔记
2014-12-1 18:03:28
Contents
List of Contributors
I. Computational Statistics
1. Computational Statistics: An Introduction
1.1 Computational Statistics and Data Analysis
1.2 The Emergence of a Field of Computational Statistics
1.3 Why This Handbook
References
扫码加我 拉你入群
请注明:姓名-公司-职位
以便审核进群资格,未注明则拒绝
8楼
award
2015-6-1 07:37:50
http://zhidao.baidu.com/share/0c4d868f23a5a14d8299d0e7e1382cd1.html
扫码加我 拉你入群
请注明:姓名-公司-职位
以便审核进群资格,未注明则拒绝
9楼
xuehe
2015-6-1 23:17:36
download it
扫码加我 拉你入群
请注明:姓名-公司-职位
以便审核进群资格,未注明则拒绝
10楼
qiucool
2017-11-7 21:15:42
thank for sharing
扫码加我 拉你入群
请注明:姓名-公司-职位
以便审核进群资格,未注明则拒绝
11楼
WFMZZ
2017-12-18 17:02:41
谢谢分享
扫码加我 拉你入群
请注明:姓名-公司-职位
以便审核进群资格,未注明则拒绝
12楼
tianwk
2019-5-25 18:09:51
thank for sharing
扫码加我 拉你入群
请注明:姓名-公司-职位
以便审核进群资格,未注明则拒绝
相关推荐
Computational Statistics Handbook with MATLAB一书的数据集
[下载]Handbook of Computational Statistics讲义81页
计算统计的好教材 Computational Statistics Handbook with MATLAB
[分享]Matlab统计入门教材Computational Statistics Handbook with MATLAB
计算统计的好BOOK handbook_of_computational_statistics
Computational Statistics Handbook with MATLAB
Handbook of Statistics Vol 09 - Computational Statistics
论坛首发资源!Handbook of Statistics, Volume 32: Computational Statistics with R
Computational Statistics Handbook with MATLAB, Third Edition 下载
Computational Statistics Handbook with MATLAB, Third Edition(2015)
栏目导航
Gauss专版
经管文库(原现金交易版)
MBA专版
经管类求职与招聘
哲学与心理学版
金融学(理论版)
热门文章
2026“课题申报”抢跑号角的已吹响!国社科 ...
Nature点赞!哈佛MIT最新作:AI科学家时代来 ...
CDA 认证考试大纲 2025 重磅更新:一二级考 ...
达富发投资关于中百集团行情数据操作分析与 ...
GTAP11运行扩展数据库出错,希望高手指点。
2025秋季大摩宏观团队闭门会议纪要
建筑的想象之整理补充笔记
英文书籍
超越普里瓦洛夫无穷乘积与它对解析函数的应 ...
中国移动:智能体互联网技术白皮书2025
推荐文章
10月重磅来袭|《打造Coze/Dify专属学术智能 ...
高校老师和学生都在偷偷上的智能体课,到底 ...
最快1年拿证,学费不足5W!热门美国人工智能 ...
关于如何利用文献的若干建议
关于学术研究和论文发表的一些建议
关于科研中如何学习基础知识的一些建议 (一 ...
一个自编的经济学建模小案例 --写给授课本科 ...
AI智能体赋能教学改革: 全国AI教育教学应用 ...
2025中国AIoT产业全景图谱报告-406页
关于文献求助的一些建议
说点什么
分享
微信
QQ空间
QQ
微博
扫码加好友,拉您进群
各岗位、行业、专业交流群